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This document is intended to accompany the lecture videos of the course “Introduction to Semiconductor 

Devices” offered by Dr. Naresh Emani on the NPTEL platform. It has been our effort to remove 

ambiguities and make the document readable. However, there may be some inadvertent errors. The reader 

is advised to refer to the original lecture video if he/she needs any clarification.  

 

Hello everyone, welcome to Introduction to Semiconductor Devices. This is lecture number 9. 

So, in the last lecture, we were talking about non-equilibrium situations in semiconductors. We 

introduce the concepts of minority carrier diffusion length and minority carrier lifetime and we 

said that these 2 parameters play a very crucial role in the response of semiconductor devices.  

(Refer Slide Time: 00:36) 

 

So, today, we will introduce a concept of Quasi Fermi levels. Quasi Fermi levels are very useful 

tools in representing non-equilibrium situations on a band diagrams. So, as we go along, we 

will understand what Quasi Fermi levels mean. Just to refresh your memory, we have seen 

these expressions before. So, basically n0 will be given by ni times exponential the distance 

from the intrinsic energy level.  

𝑛0 = 𝑛𝑖𝑒(𝐸𝐹−𝐸𝑖
𝐾𝑇

) 

And similarly, p0 will be again the same thing. 



𝑝0 = 𝑛𝑖𝑒
(𝐸𝑖−𝐸𝐹

𝐾𝑇
) 

And let us say, you have a semiconductor which is dope with 1015 dopants, you know, let us 

say arsenic or phosphorous dopants, so they have donors, we have an n type semiconductor. 

So, what would be the carrier concentration? Well, we have seen it multiple times. So, 

n0 =1015 and p0 =105. In the class, I am using it as a 105. I am using ni=1010. That is the number 

1.5 ×1010.  

 

So, and whenever we have equilibrium situation, the excess minority carriers are going to be 

0. So, where will be the Fermi level in this case? So, let us say I will do it one more time in 

case somebody who is joining fresh. So, (EF – Ei) by rearranging this equation, I can write. 

𝐸𝐹 − 𝐸𝑖 = 𝐾𝑇 𝑙𝑛 (
𝑛0

𝑛𝑖

) 
 

𝐸𝐹 − 𝐸𝑖 = 𝐾𝑇 × 2.30 × log (
1015

1010
)

 

 

So, this would turn out to be, this particular quantity here, KT × 2.3=59 meV. So, in the 

calculations that I do today or in the subsequent classes, basically, I will take this 

KT × 2.3=60meV approximately .This will simplify my calculations. I do not want to do 

exactly but it will be close enough, you know, 1 milli electron volts difference.  

 

But you know, it lead to some small error, but you can verify it whenever you need exact 

calculations or in the home-works and assignments or the exams, please use exact numbers. I 

do not want to use a calculator while teaching so I choose 60 milli electron volts and 

approximately that way. So, the Femi levels, the distance of Femi levels from Ei would be 60 

meV × 5, 
log (1015

1010
) = 5

.  

𝐸𝐹 − 𝐸𝑖 = 60𝑚𝑒𝑉 × 5 = 0.3𝑒𝑉 

 

So, you could represent that on Fermi. We have done this multiple times in the past. EF is going 

to be at 0.3 eV distance from the Ei as we increase EF changes approximate. So, the message I 

wanted to convey is at equilibrium EF captures carrier concentrations fully which I mean for 

example, you know, I have used n0 expression. You could also use p0 expression and calculate 

the distance from Ei.  

 



If you use p0 expression 105, so, you just use the p0 expression and calculate EF again. It will 

give you the same answer. The distance of Fermi level will be 0.3 eV above Ei. It will get the 

same answer plus but please make sure that you verify that. So, whenever you have an 

equilibrium situation, all you need is simply EF. If you know EF, you know all the carrier 

concentration. So, you do not even need anything more.  

 

But what happens when I have a non-equilibrium situation? But what do I do? Whenever you 

have non-equilibrium situations, we know, we have seen this in last class so, basically now, n 

is going to be the total carrier density which will be n0 plus the excess, let me put small, excess 

electrons, the excess electron density.  

𝑛 = 𝑛0 + 𝛿𝑛 

And similarly, p is going to be. 

𝑝 = 𝑝0 + 𝛿𝑝 

This is what we have seen in the last class and we said that 

𝑛𝑝 ≠ 𝑛𝑖
2 

So, these are excess carrier density that we are introducing like so, by shining light. We could 

get situations like this. So, we want to be able to represent this on a band diagram. And to do 

that we define a Quasi Fermi levels. So, define Quasi Fermi level, I simply call it as QFL, just 

for short notation. The definition we use is very similar to what we have seen in the normal 

equilibrium carrier density cases.  

 

So, I simply replace equilibrium electron density by the total electron density that will be equal 

to ni times exponential. In the equilibrium case, we had EF – Ei. So, now, instead of EF, I will 

put as EFn, - Ei by KT. 

𝑛 = 𝑛𝑖𝑒
(𝐸𝐹𝑛−𝐸𝑖

𝐾𝑇
) 

Similarly, for holes, I will replace the equilibrium hole density by total hole density. And that 

will be equal to exponential. We might already be guessing here. So, instead of EF, I will put it 

as EFP by KT.  

𝑝 = 𝑛𝑖𝑒
(

𝐸𝑖−𝐸𝐹𝑝
𝐾𝑇

) 

So, what I am essentially doing here is; I am replacing n0 by n, EF by EFn and p0 by p, EF by 

EFp. So, these EFn and EFp are known as Quasi Fermi level. So, this is the definition. So, EFn 

and EFp are called Quasi Fermi levels. This is different from the regular Fermi levels. So, we 

saw that regular Fermi level is useful when you have equilibrium situations.  



 

Whenever you have non-equilibrium situations, we use Quasi Fermi levels, which essentially 

capture the total carrier densities. So, this is how we define it. And why do we have two of 

this? In the regular situation, we had only one Fermi levels. We do not have one Fermi levels 

for electrons and Fermi levels for holes in equilibrium situation. We saw that you know, either 

of the expressions is giving the same answer. But if we go to non-equilibrium, we see that it 

does not work and we have to use what is known as Quasi Fermi level.  

(Refer Slide Time: 08:14) 

 

Let us take an example. The same situation, just note I have replaced here the expressions, 

instead of n0, I am using n and then I am using EFn which is a Quasi Fermi levels for electrons. 

Similarly, p and then Quasi Fermi level for the holes. So, now consider the same situation, you 

have a doping density of 1015. But now, I have electron and hole excess carrier density as 1017. 

I will introduce by let us say, shining light.  

 

So, we also saw that the Fermi level, the equilibrium Fermi level EF was basically 0.3 eV above 

Ei. So, now where will the Quasi Fermi level for holes and electrons be? So, to do that let us 

estimate you know, in equilibrium case, of course, now, you can, if you substitute the 

equilibrium carrier densities in the expressions, at equilibrium 𝛿𝑛 = 𝛿𝑝 = 0. Therefore, 

 𝐸𝐹𝑛 = 𝐸𝐹𝑝 = 𝐸𝐹. Please you know, try to substitute these numbers, will check it out. It will 

turn out to be this that is in a equilibrium situation.  

 

But now, when we want to talk of non-equilibrium situation, so we have; what is n?  

𝑛 = 𝑛0 + 𝛿𝑛 = 1015 + 1017 ~1017 𝑐𝑚−3 



Let us take it to be that. Okay,by the way, I am always ignoring the units, but please make sure 

that units are right.  

𝑝 = 𝑝0 + 𝛿𝑝 = 105 + 1017 ~1017𝑐𝑚−3 

This is carrier density.  

 

Now, where will the Quasi Fermi level? We use the same approach as we taken for the regular 

Fermi level. 

𝐸𝐹𝑛 − 𝐸𝑖 = 𝐾𝑇 × ln (
1017

1010
) ~60𝑚𝑒𝑉 × 7 = 0.42𝑒𝑉

 

7 orders of magnitude changes in the carrier concentration, so basically 7. So, that will be how 

much. It is going to be exactly equal to 0.42 eV.  

 

So, the Quasi Fermi level for electrons is at 0.42 eV from Ei. Similarly, you could do a 

calculation Ei – EFp. 

𝐸𝑖 − 𝐸𝐹𝑃 = 𝐾𝑇 × ln (
1017

1010
) ~ 0.42𝑒𝑉

 

So, what this is telling us is: whenever you have non-equilibrium situation, we can represent 

that by Quasi Fermi levels. Now, for this case, this Quasi Fermi level, I will represent 

somewhere here, the distance is going to be a 0.42 eV.  

 

Similarly, there is a Quasi Fermi levels for holes. This distance is 0.42 eV, EFp, this is EFn. So, 

the conclusion what we are seeing is the EFn and EFp need not be the same when you have non-

equilibrium. So, the conclusion would be; non-equilibrium is represented by two lets say Quasi 

Fermi levels EFn and EFp. So, I mean, people get confused. Students, sometimes, they are 

confused, it is simply a tool for us, even Fermi level as tool to represent how the carrier densities 

are in a semiconductor.  

 

So, it might not so, you might not see it, you know, right now, when you look at this now, just 

2 levels, you know, uniform semiconductor, does it matter. But once we have a device with p-

n junctions and all that, these become very useful tool for us to visualise, just by drawing the 

diagram, you know, what is happening in the device, so, band diagrams. So, this is a definition. 

Let us take another example. This is the first case. Let me take another example.  

(Refer Slide Time: 13:07) 



 

Now, I will retain everything same in the problem except that now, I have changed the excess 

minority carrier densities to be 1010. So, now what happens? So, now you will see that. 

𝑛 = 𝑛0 + 𝛿𝑛 = 1015 + 1010 ~1015 𝑐𝑚−3 

𝑝 = 𝑝0 + 𝛿𝑝 = 105 + 1010 ~1010𝑐𝑚−3 

So, where will the Fermi level be?  

 

We can easily compute that let us see, 𝐸𝐹𝑛 − 𝐸𝑖 
is going to be now I am writing the answers; 

please if you are unsure, stop it, go back and verify and make sure that you get it right;  

𝐸𝐹𝑛 − 𝐸𝑖 = ~60𝑚𝑒𝑉 × 5 = 0.42𝑒𝑉 

𝐸𝑖 − 𝐸𝐹𝑛 = ~60𝑚𝑒𝑉 × log
10

10
= 0

 

So, basically, what this is telling us is: the Fermi levels have become I will not draw EF, the 

regular equilibrium I just draw the well let me actually put EF.  

 

Now, the Quasi Fermi level for electrons is also at the same location. Remember, see, you are 

getting the distance from the equilibrium sorry, the intrinsic level is 0.3 eV. So, basically, what 

we are seeing is 𝐸𝐹 = 𝐸𝐹𝑛. And whatever the Quasi Fermi level for the holes, I should have 

written it as p here EFp. You see that EFp the Quasi Fermi level for holes is equal to the intrinsic 

carrier density. So, your EFp.  

 

So, what does mean 𝐸𝐹 = 𝐸𝐹𝑛? What does it mean? It implies that electron concentration. It is 

not significantly perturbed by the excitation. You are essentially having a electron hole pairs 



created by light and that excitation is not really changing the electron concentration that is why 

𝐸𝐹 = 𝐸𝐹𝑛 and the EFp is changing.  

 

In the previous example, when the concentrations for 1017, EFp was much, much closer to the 

EV. So, basically as the excess carrier density is increased, EFn goes towards, let us say we can 

even conclude this, as δn increases, EFn moves closer to EC. Similarly, as δp increases, EFp 

moves closer to EV, vice versa. Exactly what you would expect with a Fermi level, but you 

know in n type, the Fermi level will be above Ei, in p type will be below Ei.  

 

Now, even in n type semiconductor when you have excess carrier density, you could have EFn 

and EFp, which are exactly the same expressions, just the definition slightly different. We are 

taking the total carrier density into account. One more example, let us say δn= δp = 107cm-3 .So, 

I will cut the story short. I will say 

𝐸𝐹𝑛 − 𝐸𝑖 = .3𝑒𝑉 

𝐸𝑖 − 𝐸𝐹𝑝 = 60𝑚𝑒𝑉 × log
107

1010
= 60𝑚𝑒𝑉 × −3 = −0.18𝑒𝑉

 

 

So, what it is happening is: as you are reducing the excess minority carrier density, you are 

moving closer to EF. So, now in this case, the third case I will put it in the red here. So, it is 

somewhere here this was EFp for δp=107. So, you see, we have seen in the previous case like 

right, last lecture that as you as the excess minority carrier concentration reduces, sample 

approaches equilibrium. 

 

So, we can conclude that as sample approaches equilibrium EFn and EFp approach EF. So, we 

said that already. Because we said there is no physical reason I mean, if you see the way the 

Quasi Fermi levels are defined at equilibrium both are equal to EF.  


