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We want to determine how these quantities change as a function of position as a function of 

time. To do that, we need to solve some equations. We try to build that equation. To do that, 

let us just consider a situation where you have basically a semiconductor. Let us call it an n 

type semiconductor. We could easily take a p type semiconductor. There is no harm. There is 

no difference at all so, n type semiconductor.  

 

And it has a doping, some doping. Right now, I do not need to worry about what is the doping 

and I will shine light only at you know, I will apply light pulse. So, only at x = 0 some position, 

you know this is position x. At position x = 0, I apply light pulse and then I create excess carrier 

density which is equal to δp0. Somehow, just shine light only focus it only on certain section 

of the semiconductor. So, now what happens?  

 



You are created the other places you have. δp0 might confuse you, but essentially I am saying 

the δp0 is at time t = 0. Its not the changes in the p0. p0 is the equilibrium carrier density. But 

δp0 means that δp at time t = 0. So, now what happens? At other locations in the semiconductor 

at time t = 0. At time t = 0 here, I mean away from the semiconductor, away from the x = 0 

point.  

 

δp = 0 because it is at equilibrium. There is nothing that is disturbing that. At t = 0, for I will 

put it in is only for x < 0 and x > 0. At x = 0, we are having exactly δp0. At every other place, 

there are no excess minority carriers. So, there is a concentration gradient and we saw that there 

is a diffusion process that happens whenever you have such a situation. So, what will happen 

is the initial if I take the, if I plot out let me plot this is δp versus x.  

 

So, initially a time t = 0, I have my carrier density, minority carrier density, p type right n type 

semiconductor. So, δp at x= 0. Let us say this is the number of holes that are introduced. Now, 

as time changes what is going to happen? These things are going to diffuse. So, what I need to 

do is essentially monitor. For example, I can monitor a location maybe here you know, at some 

x = x0 I will try to monitor what is the number of holes okay.  

 

So, because there is a gradient the holes are going to diffuse. It is going to diffuse and it will 

cross the surface. This x = x0 at that particular surface. So, I will try to monitor what is the rate 

at which the minority carriers are causing that surface and that I will denote by a partial 

derivative of δp with respect to time. So, excess minority carrier at x = x0 is going to be 

changing with respect to time, and that I will represent by this.  

 

And it turns out that this is a diffusion problem. This is a very classic problem that is introduced 

probably in plus 2 for some of you. If not just you know, look up Wikipedia and it is a very 

straightforward problem. So, what this tells you is that, whenever you have this diffusion like 

processes, the excess minority carrier concentration is going to be dependent on the diffusion 

coefficient times the second derivative of δp with respect to space.  

𝜕𝛿𝑝

𝜕𝑡
= 𝐷𝑝

𝜕2𝛿𝑝

𝜕𝑥2
 

So, this is called as a diffusion equation. So, what this is telling you? You remember this is first 

derivative with respect to time and this is second derivative with respect to x. And the 

coefficient that is linking is the diffusion coefficient. This is the same diffusion coefficient 



which is on the diffusion process. We wrote the current density as you know product of 

diffusion coefficient times the gradiant. 

 

If you want to look at the time change also, then you could do this. I mean, they are all 

interrelated. So, this is the original equation from that you can derive the current densities and 

so on. So, this is your diffusion process that is happening. So, if you just shine the excess 

minority carriers, and just if you create the excess minority carriers, they will simply diffuse.  

 

In addition, we have also been talking about the recombination process. Let us say, what 

happens to recombination? How does that happen? We want to monitor how the minority 

carrier density changes with respect to time. So, let us write it as partial derivative, same partial 

derivative with respect to time. So, over here, in let us see, if I call this as equation 1, equation 

1, I am only talking about a diffusion process.  

 

But definitely we know that there is going to be a recombination process. That also has to be 

accounted for. And this is partial derivative with respect to time of delta p excess minority 

carrier density. And whenever you consider recombination process, we know that it is going to 

be proportional to the excess minority carrier density δp. 

𝜕𝛿𝑝

𝜕𝑡
 ⍺ 𝛿𝑝 

Think about it, how will be the rate of change of minority carrier density? 

 

Will the minority carriers increase with time or decrease with time. Whenever you are 

recombining electron and holes your minority carries density is reducing. So, your 

proportionality constant should have a you know, I mean, this equation should have a - sign. 

To denote that you have a decrease in the rate at which the minority carriers are changing with 

respect to carrier concentration.  

 

And if you write out the actual equation, I mean, the proportionality constant, you could 

actually solve it. The proportionality constant turns out to be the partial derivative with respect 

to time, 

𝜕𝛿𝑝

𝜕𝑡
=  

𝛿𝑝

𝜏𝑝
 



So, what I am trying to say is this proportionality constant, which I call is minority carrier 

lifetime. And if you solve this, you will see that actually, 

𝛿𝑝 = 𝛿𝑝0𝑒(
−𝑡
𝜏

)
 

That is why I wrote in one of the previous slides that this is basically an exponential decay. So, 

you have time here and this is going to be δp, essentially, we want to have an expression. So, 

this is δp0. So, this is how minority carriers will change. So, these are the main processes.  
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So, what we will do is we will try to sum them up into a equation, which we call as minority 

carrier diffusion equation. This is something that you will see you know in many places. So, 

what we did is we are just recapping, we are saying that excess magnetic carriers concentration 

plays a very crucial role, and the diffusion equation that controls that can be written in this 

form.  

 

So we are combining both the diffusion process and the recombination process. This is 

basically time variation at a particular position, how does the magnetic carrier density change 

in time. That is going to be dependent on the diffusion processes and recombination process. 

And for complete sake, of course, I did not really describe it. But it also depends on the 

generation rate.  

 

We are only talking about how the deficient ones are created, but then you also have if you are 

talking about time dependence, you also have to include the generation rate. And that is what 

we call us excess minority carrier diffusion equation MCDE. This is for n type semiconductor. 



If you have an n type semiconductor you have δp which is a minority carrier, p is a minority 

carrier and we will write it for minority carriers.  

 

If you have a p type semiconductor, you will write it for n. And that is why this is going to be 

τn, this is going to be τp here. Remember all of the coefficient everything are corresponding to 

only the minority carriers. I should also point out this is a simplified version. If you want to 

actually solve it in devices, you also have to take into account what happens with the field.  

 

Because you are diffusion process is going to be affected by the field. That is an additional 

variable, which I have not really taken into account. Well, I mean, if you want to do that, it 

becomes a little bit more. It is complicated, and we do not gain much out of it right now. So, 

for the physics necessary for understanding the operation of the devices is this. I mean, if you 

understand the spatial and diffusion and the time dependence that is enough.  

 

That is why we put in that the field dependence part of it okay. But it is still there, I mean, in 

the real devices, because we are definitely going to have introduction of minority carriers and 

then there will be some fields also applied. So, the diffusion process is going to be accelerated 

sometimes. We have to see that as well. Anyway I also want to point out one specific case this 

equation is valid essentially for what we call us low light injection.  

 

Low level injection, by which I mean that if I am introducing this you know, the stimulus that 

is introducing this excess minority carriers is such that the minority carrier density itself is quite 

small compared to the majority carrier density. The majority carriers are n0. They are 

significant in number. We are not reaching a level where you know, you are reaching the 

minority carriers are reaching that level.  

 

Suppose if you consider a situation where you know, δp is of the order of n0, the majority 

carrier density, then this is called as high level injection. Then something has changed. I mean, 

because we have to have a few more processes that have to be accounted for and all that. 

Anyway low level injection means that minority carrier density is much smaller than the 

majority carrier density, but still it is significant compared to the equilibrium minority carrier 

density.  

 



The δp>p0. Similarly, for holes, you have the same relation. So, this is what we will consider. 

If not, then we have to do some corrections. Anyway, so, this is a background, you know what 

we need to solve? Let us take a few examples to try to solve them. With that, we will know 

how to interpret the results.  
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So now let us consider one case, where you have a semiconductor and shining I mean I am 

illuminating the semiconductor with the light. Let us assume that this is the thickness of 

semiconductor. I am drawing it in 2d, but equally applicable to 3d. And because I am doing it 

in 2d, because I will only need to look at you know, that character in one direction here.  

 

So, my, let us assume that L is much much smaller than the absorption length L absorption. L 

is much much smaller than L absorption. So, because I am shining light there is going to be 

absorption length. Light is going to be absorbed at a certain you know rate as of which is given 

to the absorption coefficient of the semiconductor. And then if your device length is much, 

much smaller, then you can assume that this implies light is uniform.  

 

Uniform across a semiconductor. There is no spatial dependence. That is why we are assuming 

that the length of the semiconductor is so. Basically at each point in this device, you have the 

same amount of light that is incident, so same amount of electron hole pairs. So, essentially, 

this implies that uniform generation and if uniform generation is happening, uniform generation 

implies no spatial dependence.  

 



Just different way of seeing the same thing. So, the deficient term is going to go to 0. And I am 

also saying that this is a steady state problem, by which I mean that I have turned on light and 

I am waiting for some time till everything stabilises. It is not the same as equilibrium. Because 

once you introduce electron hole pairs by using light, there is an excess minority carrier density. 

And then there is some recombination.  

 

So light is driving the creation of excess minority carriers and recombination is actually 

reducing. So, there is a certain equilibrium you know, there is certain steady value of electron 

hole pairs each. And that is why we will say that you know, we are saying that it is that steady 

state. So, essentially there is no change with respect to time. So, basically what I will say is this 

one steady state implies no time dependence of δp. 

 

No, I am taking an n type semiconductor. So, δp is time dependent. So, that is what it is. So, 

that is it, we have everything that we need to solve this particular situation. So, what does 

MCDE reduce to? Well, MCDE becomes, the minority carrier diffusion equation MCDE 

becomes well, taking the other side, so basically δp when there is no time, there is no time 

dependence. There is no space dependence.  

 

I can simply write as 𝛿𝑝 = 𝑔𝑝𝜏𝑝. Let us say I am having light, generation rate of light generated 

electron hole pairs gL, write it as lights you know. This is equal to gp. The rate at which holes 

are generated is going to be let us say 1017 centimetre cube per second. This is the rate at which 

I am generating. So, what is the minority carrier density?  

 

δp is going to be what you might think that it is 1017 but no, there is a recombination process 

which is going to result in a steady state. So, the amount of excess minority carrier density is 

going to be, I have to also tell you what is τ? So let us say τ=10-6 seconds. This is a kind of 

large number I would say largest number, typically the lifetime is going to be smaller.  

 

So then 𝛿𝑝 =  1017 × 10−6 = 1011𝑐𝑚−3. So, you have this much of minority carrier density 

in the semiconductor. So, you could actually, how does that depend on position? Well, if you 

take this as a semiconductor, if I plot δp versus x, what is it going to be? Well, it is going to be 

a uniform generation.  

 



So there is no spatial dependence. 𝛿𝑝 =  1011𝑐𝑚−3. I want you to appreciate this that even 

though the rate of generation is 1017 in my case, in the steady state, the net excess minority 

carrier density is going to be 1011. This essentially the net excess minority carriers. Remember, 

this is happening because we have continuously the light on.  

 

If you switch off the light, immediately, you know, it will start decaying and then you will go 

to 0. You should have the physical picture. Equation is simply telling you the physical picture, 

if you are understanding the physical description of the problem, then equations are very easy 

to apply, not the other way around. It is difficult to decode the physics from the equation, but 

the other way around is very simple. So this is the first case where you know, fairly simple.  
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Now let me take the second case, where I will say that my length of the semiconductor is large 

compared to the absorption length. So, what I will do is, now I will take a semiconductor which 

is long I wanted a rectangle. Let me do it one more time. So, now my length is going to be L is 

going to be greater than L absorption, much, much greater. So, what I am trying to say is, when 

you shine light, for example, let me say I will shine light.  

 

Now this side is very easy. All my photons are going to be absorbed only at x = 0. This left 

side is x = 0. All photons are absorbed at x = 0. What I am trying to say is the length is much, 

much longer, let us say, you know, the photon has an absorption length of, let us say, one 

micrometre or something like that. If you are considering 10 microns, or you know, one 

millimetre sample, then essentially you could take the absorption is happening only at x = 0. 

 



That is why the long sample, and it is still steady state. So, what happens? You turned on the 

light and then see, you want to watch what happens. Well, one important point is we do not 

have to worry about we are simplifying the problem. We are assuming that the light is not 

penetrating into the sample. So, there is no generation. So, zero within the sample right? Within 

sample, there is no generation.  

 

But still, depending on the extent of you know, generation rate at δp at x = 0, it is going to be 

some number. It is still going to be if you have a rate of 1017, let us say. That is what we took 

last time, right? We took 1017. So, let us take the same numbers 1017× τp, τp = 10-6. So, we will 

have 𝛿𝑝(𝑥 = 0) =  1017 × 10−6 = 1011 𝑐𝑚−3.  

 

We are shining light. It is getting absorbed all of it, and it is creating some sort of a you know, 

at x = 0, we will have this much of excess minority carriers. So, now what happens within the 

sample? So this is the rate at which the photons are coming and then that is generating an excess 

steady state number of 1011. So, previously, we had 1012, no 1011.  

 

So what happens now? So you are generating these, you know, huge number of minority 

carriers. In this case, holes are being generated here. What happens? Of course, they are going 

to diffuse. So, we want to solve the equation in the semiconductor. So, to solve in the 

semiconductor, at steady state, we turn on and we just wait for some time, we do not do 

anything.  

 

We wait for some time. When we do that, this is basically steady state. So, this is going to go 

to 0, this expression is going to go to 0 because steady state. I should write it in a different way. 

This goes to 0 because steady state. So, now our MCDE becomes what? The second derivative 

with respect to position, so I will write it as δp. Now this can depend on position.  

 

δp is going to depend on position the time dependence is gone. But there is still position 

dependence. I mean, I can write it as partial derivative or even the full derivative, it does not 

really matter. And I will take the recombination term on the right side. So, basically, I can write 

it as δp(x) divided by τp. 

𝐷𝑝

𝜕2𝛿𝑝(𝑥)

𝜕𝑥2
=  

𝛿𝑝(𝑥)

𝜏𝑝
 

This is my MCDE, now, simplified MCDE.  



So now what I will do is I will actually move this guy, Dp, I will put in here the denominator. 

𝜕2𝛿𝑝(𝑥)

𝜕𝑥2
=  

𝛿𝑝(𝑥)

𝐷𝑝𝜏𝑝
 

So, what happens is, what are the units think? Think about the units of the denominator here. 

By dimensionality you should already see that it should have a position square but let us just 

see. So, this is the Dp is going to be the diffusion coefficient. So, centimetres square per second 

times second, τp seconds. So, you should have a centimetres square unit. So, now what I will 

do is I will define this.  

 

I will define quantity which I will call as, diffusion length Lp. 

𝐿𝑝 = √𝐷𝑝𝜏𝑝 

So, this is my, this diffusion length is one important part of my problems. So, please remember 

so this is going to have a unit of centimetre. Always remember, you know, in semiconductor 

device physics, the convention is that we use centimetres for lengths, we do not use metres.  

 

This is a strange convention, but no other textbook use it. And It is been historical reasons, you 

know, it is much more common. So, this is going to be having centimetres units. So, now what 

happens to this equation? This equation now becomes. 

𝜕2𝛿𝑝

𝜕𝑥2
=  

𝛿𝑝

𝐿2
 

So, I can solve this. Well, when I say I can solve this, I will not solve it, but I will tell you the 

general solution.  

 

You should have solved this in some of your differential equation ordinary differential 

equations course. If you have not done that, just verify that this solution is correct. 

𝛿𝑝 = 𝐴𝑒
(

−𝑥
𝐿𝑝

)
+ 𝐵𝑒

(
𝑥

𝐿𝑝
)
 

This is a general solution that is allowed for the equation. You can verify it, you know.  

 

Yeah, take a secondary derivative with respect to position. You will see that you know, it is 

coming out to be this. So, the problem will be which of the coefficients is allowed? A or B? 

So, now, we are shining light on x = 0. If you allow the second coefficient to be there, if you 

know this goes to 0, essentially, let me summarize. B goes to 0 because as x tends to infinity, 

δp has to tend to 0.  



 

Because you are only having light at the left edge. As you go further into semiconductor the 

carrier concentration has to drop. So, because of that, B has to be 0. Therefore, B is 0. So, only 

term that is remaining is A term, and we can find out, how to solve for it. So, let us do that.  
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Let us say our equation has turned out, 

𝛿𝑝(𝑥) = 𝐴 × 𝑒
(

−𝑥
𝐿𝑝

)
 

So, A is going to be, now we know that δp(x=0) was 1011per centimetre cube. That is what we 

did. This is 1011, we substitute that. So, essentially, you are going to get δp(x) is going to be, 

𝛿𝑝(𝑥) = 1011  × 𝑒
(

−𝑥
𝐿𝑝

)
 

So, what does this tell us?  

 

How do the semiconductors you know how does the distribution of minority carriers look like? 

So, you take this. Plot it as a position of x this is δp, we are going to have an exponential decay. 

Fantastic, I mean one of the simplest things that we can think of. But δp0, this is equal to 1011 

here and as you go, we define the diffusion length.  

 

Now we can define the diffusion length as the position as x at which the minority carrier, excess 

minority carrier concentration falls to 1 over e, when it becomes 33%. So, that is when you 

know, this is .36. So, when basically 
1

𝑒
𝛿𝑝0. So, if you have this, then assume that is a diffusion 



length. Essentially your minority carriers are decaying over a certain distance. And what is this 

number?  

 

How much is this length? Let us try to estimate. We said L p was, 

𝐿𝑝 = √𝐷𝑝𝜏𝑝 

Well, I mean Dp, what was diffusion coefficient? So remember, diffusion coefficient was, 

𝐷𝑝

µ𝑝
=

𝐾𝑇

𝑞
 

Einstein relation. And µp, µp was 480 centimetre square per Volt- second. This is the mobility 

of holes. You multiply it by .0256 or .0259, you should get it.  

 

And you know, so 𝐷𝑃 = 480 × 0.0259~ 10 
𝑐𝑚2

𝑠𝑒𝑐
. Just you can verify this, I do not want to 

calculate this. So, now with this what will happen? Your 

𝐿𝑃 = √10 × 10−6 = 3. 𝑥 × 10−3𝑐𝑚 ~30𝑐𝑚 approximately. Remember, there is always 

centimetres you have to put additional thing.  

 

So this is actually a quite large number. As I said, you know, the minority carrier lifetime is 

going to be smaller, 10-9 something. It depends on the semiconductor, you know, if you have a 

indirect semiconductor, this might be long, direct semiconductor it will be small. So, it is 

sample dependent, it is not necessary right now for us.  

 

So what this is telling us is, if you introduce minority carriers, over a, you know, 10 microns, 

10 to 20 - 30 microns range, they will all decay. You are not going to see the effect of these 

minority carriers deep in the semiconductor. It is going to be close to the surface. And we will 

see that in pn junctions, the minority carrier diffusion is going to be close to the junction itself. 

So, that is why we introduced this.  

(Refer Slide Time: 32:01) 



 

So Well, yeah, I am running out of time, only 15 minutes, let me quickly wrap up. So, the third 

case I wanted to discuss was a transient case, you know. Let us say there is no spatial variation. 

We have talked about it in a different way, there is no spatial variation. So, this is going to go 

to 0. I will just quickly do this. I am not going to spend as much time and then there is a no 

generation.  

 

Well, what it means is, let us say I will take a sample I will shine it with photons uniformly so 

that there is no spatial variation. And then at time t = 0, I will switch it off. So, at t = 0, light is 

turned off. So, we already said that, you know, it is about exponential decay. And the 

coefficient, the time constant is τp. But I just want to show you that.  

 

So before, you know, basically what happens at p < 0? Basically, light is on. It is going to be 

in the steady state. You can solve the problem, same time, we have done it a couple of times 

already. So, there is steady state for time less than 0. And therefore, δp(t<0) is going to be 

simply generation rate, gp times τp. 

𝛿𝑝(𝑡 < 0) = 𝑔𝑝𝜏𝑝 

Let us assume the same generation rates.  

𝛿𝑝(𝑡 < 0) = 1017 × 10−6 = 1011𝑐𝑚−3 at time less than t = 0. 

Now, for t > 0, g light is going to 0. 

𝑖. 𝑒, 𝑡 > 0  𝑔𝑙 = 0 

I mean, it is basically not creating any electron hole pairs. So, gp is going to be 0, okay? When 

I say gp , gl , it is all you know, when I say gl , it is light generated carriers is going to produce 

electrons and holes.  



 

And the rate at which electrons have been produced or holes are being produced is going to be 

gp, same thing. So, what is this at time gp = 0. So, essentially, diffusion equation MCDE 

becomes partial derivative of excess minority carrier density with respect to time. That should 

be equal to, 

𝜕𝛿𝑝

𝜕𝑡
= −

𝛿𝑝

𝜏𝑝
 

Other terms are going to 0. So, you can solve this.  

 

And this solution turns out to be, 

𝛿𝑝 = 𝛿𝑝0𝑒
(

−𝑡
𝜏𝑝

)
 

So you can solve these things, if you are interested. Just take some moment and solve it. It is 

not very difficult equations. So, I have this as a function of time, and this is a function of δp. 

So, my axis is δp. So, you are going to have exponential decay.  

 

And that is what we have shown earlier actually, this one τp. So, this is in our case example 

1011 . This is some time you know, we got one microsecond or something like 1 microsecond, 

τp=1 microsecond. Anyway, you will see that you know what happens. So, this is a already we 

have solved this case. So, I just quickly went over this.  

(Refer Slide Time: 35:47) 

 

So, you can take some examples, this is basically excess carriers as a function of time. The 

same problem just we did. I want you to work out. So, we saw that the equation is going to be 



you know, one small difference here. This is a δn is given to you. That means we are talking 

about a p type semiconductor, remember. This is p type semiconductor, because we are only 

talking about minority carriers, the p type semiconductor.  

 

So, the minority carriers are basically going to be δn. δn(0)=1015. And you are switching of the 

light. So, essentially, it is going to be 𝛿𝑛 = 1015𝑒
(

−𝑡

10−6)
. This is a time. So, please find out what 

it is? I will tell you the simple cases t = 0 and δn. So, of course at t=0, I will do this for you 

1015.  

What happens at t = 1 microsecond? What happens at t = 10 microseconds? Let us put in some 

numbers and calculate. And you will see that quickly in 10 microseconds nothing will be left I 

mean, you will reach basically the n0 whatever it is. This excess minority carriers is going to 

become 0, almost 0. Check it out. Check it out what happens? Negligible compared to the 

original starting point.  

 

So, as you know even 100 microseconds maybe you should try to check it out, what happens? 

As you go to longer and longer times δp is going to become 0. So, this is basically how you 

calculate you know, minority carrier lifetimes and diffusion lenghts. These are very, very 

important.  
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And in the end, I just want to show you, if you have a combination of both, you know, so far 

we have done problems with spatial dependence or time dependence. But if you combine both, 

you could solve it. I just know it becomes mathematical a little bit more involved. But the idea 



is that you start with Lets say I introduce that same problem as it was just started with. I shine 

I take a piece of semiconductor, I shine light at a location x = 0.  

 

And I switch off the pulse. What happens? So, originally you have this position dependence 

exactly, you created that you know, that many electron hole pairs, but as time progresses, this 

is basically as a function of time you see here, as you know, 1 millisecond, 10 milliseconds and 

100 milliseconds. As you go and longer and longer in time, you see that the profile is becoming 

spread out. So, there is diffusion process.  

 

This is basically because of diffusion. And also, there is going to be some recombination 

happening, which will essentially reduce the total area under the curve. If you calculate the 

area under the curve, that will tell you the total number of carriers. And you will see that 

eventually that becomes 0. As you go to longer and longer times, essentially indicating that all 

the electron hole pairs are getting annihilated.  

 

So, I mean, this is basically, it is going to make sense. Qualitatively it should make sense to 

you, there are numbers which you know, I think is not really necessary for this course. In an 

advanced course, maybe we could talk about it. So, already 58 minutes, I would like to stop 

here now. So, yeah, so today, we talked about one very important concept of non equilibrium 

dynamics.  

 

So we see that, you know, in all our semiconductor devices, we are going to introduce some 

electron hole pairs, right, we are going to distribute from equilibrium. Equilibrium is that it 

exists without any external stimulus. Once you distribute with an external stimulus with voltage 

or current, optical light or something like that, so it is going to change the minority carrier 

density.  

 

And that is going to be captured by the diffusion length and the diffusion time, minority carrier 

lifetime. These are very, very important parameters. Please make sure that you are comfortable 

with what do you mean by diffusion length L. I will write it. So, please make sure that you are 

comfortable minority carrier diffusion length and minority carrier lifetime. This we called as τ 

and this we called as L.  

 



If you are talking of p type semiconductor you will talk of τ and Ln and vice versa n type 

semiconductor. 

 


