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Hello everyone, welcome back. This is lecture 5 of the course Introduction to semiconductor 

devices.  

(Refer Slide Time: 00:17) 

 

In the last lecture, we introduced a few concepts like effective mass and we introduced intrinsic 

carrier density and then we talked about how doping can be used as a means to control the 

carrier density in semiconductor devices. And in the end, we also studied a little bit about the 

temperature dependence of the carrier density in intrinsic semiconductor as well as extrinsic 

semiconductor.  

(Refer Slide Time: 00:42) 



 

So, today we will try to get into a little bit more depth. We will try to give you a quantitative 

picture of what is happening. So, to start with let us we have to introduce a few functions, a 

few concepts. The first one is Fermi function. Fermi function is a function which is given here,  

𝑓(𝐸) =  
1

1 + 𝑒(𝐸−𝐸𝐹
𝐾𝑇

)

 

So, this is a function that gives you the probability. So, f(E) gives the probability of finding an 

electron at a particular energy an electron at a energy E. Why is this important? Well, because 

you know electrons are distributed. We have this energy bands which are allowed states, but 

there is a certain amount of probability of you know which of them will be filled which has not 

filled. So, that probability is given by this Fermi function.  

 

So, it plays a very crucial role. And in this function KT is anyway the Boltzmann constant and 

temperature. So, that will be units of energy and EF, what is known as Fermi energy. You can 

also call it Fermi Level. So, EF is a number basically an energy. So, how does this function 

behave ? Let us try to analyse the situation. So, let us consider, to begin with, let us say it is 

easier to do it at T = 0 Kelvin.  

 

So let us consider that So when T=0, temperature is 0. What happens if energy is less than EF? 

E<EF. So, EF implies this here, the exponential term in the denominator is going to be negative. 

So, 
𝑒(

𝐸−𝐸𝐹
𝐾𝑇

) 
  is in the denominator, and this term will be, the exponential term in the 

exponential is going to be negative, and because of which, essentially, the exponential will go 

to 0. Therefore, your f(E) the probability of finding an electron at a particular energy, if E<EF, 



that is going to be 1. It has a very high probability of finding an electron below an energy EF. 

Now, what happens if energy is greater than EF. So, if E>EF, then this exponential term, the 

most important again, so now this is going to be E–EF, so the numerator is going to be positive.  

 

But then the denominator is going to be very small, so then essentially, this kind of goes to 

infinity, it tends towards infinity. Therefore, f(E)=0. So, fermi function at 0 degrees Kelvin 

behaves like a step function. Below EF, it is going to be 1, above EF, it is going to be 0. What 

happens at EF? So for the moment, consider E = EF . 

 

When E=EF, exponential basically, the parameter in the exponential is 0. That means 

exponential of 0 is 1. So, basically, f(E)=1/2. It is going to be exactly 0.5. So, this is an 

important thing to note. So, whenever your energy equal to Fermi energy, then the probability 

of f(E)=1/2 . So, this also gives you one definition of Fermi energy.  

 

It is basically you can define it as Fermi energy is that energy where f (E)=1/2. This is one 

definition of Fermi energy. What happens at higher temperatures? So, if you look at the 

expression for Fermi energy, at E=EF, you saw that it is basically independent of temperature. 

So, this particular thing, this basically is independent of temperature.  

 

So, f(E)=1/2 no matter what the temperature is. So, if you analyse it, and you actually you can 

plot it in MATLAB or Python, it looks now the graph is shown here, it looks like this. So, here 

I have deliberately, you know, flipped the axes. So, I am plotting f(E) along X axis, and energy 

along Y axis. There is a reason, you know, why we do that. So, what you see is at T = 0, you 

have this step like behaviour.  

 

At higher energies, there is no probability, E below EF it is going to be probability one, very 

high probability. So, now, as temperature increases, the probability gets stretched. But always 

the f(E) should go through half at EF. So, if you keep the EF constant and change temperature, 

it is going to stretch like this. And if I for example, if I take one more you know case where let 

us say I take a slightly higher temperature, so, that would have been like this.  

 

It will stretch out further. Basically this will be equal to let us say T = 400 Kelvin. So, as we 

increase the temperature the fermi distribution stretches out. So, we can make a note here, so 

basically as T increases, f(E) is stretched. Stretched around EF. So, this is the characteristic.  
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So, how does this help us? This definition of Fermi energy is useful in denoting the operation 

in actual, in representing the operation of various semiconductor devices. For example, when 

we talk of PN junctions or MOSFETs we will always show a level which is called as Fermi 

level. That gives us a very, very easy way of understanding what is happening in the device.  

 

So, for that we need to understand this concept of Fermi level very well. So, to do that, let us 

try to analyse a few situations. The first one we will consider is what happens to Fermi level in 

an intrinsic semiconductor. What would you expect? You know where? Where do you expect 

the Fermi level to be? So in an intrinsic semiconductor, you saw this already many times, you 

know, you have this electron hole pairs generated.  

 

And at a particular temperature, let us say there is some electron hole pair distribution like 

this. So, what is the probability of finding probability of finding an electron at EC? What will 

that be? We saw f(E) is basically the probability of finding electron at E. So, simply replace E  

by EC.   

𝑓(𝐸𝐶) =  
1

1 + 𝑒(𝐸𝐶−𝐸𝐹
𝐾𝑇

)

 

So now, what will be the probability of finding an electron at finding an electron hole? Let us 

not consider electron, let us consider the hole. Probability of finding a hole, at Ev. The 

probability of a hole is simply lack of electron. So, probability of finding a hole is basically the 

probability, probability of not finding an electron. The probability of not finding an electron is 

simply going to be 1– f(EV).  



 

f(EV) will give you the probability of finding an electron. The probability of not finding an 

electron is going to be one minus that. So, this is what it is going to be, and if you well. So, 

now, so we have these expressions basically. It is the expressions. So, how will this help us 

find the Fermi level of an intrinsic semiconductor? So we use the relation we know that in an 

intrinsic semiconductor, n = P in intrinsic semiconductor.  

 

We have not added any other dopants. So, basically there are only electron hole pairs which 

are produced and that should give us basically n = P. So, if n = P, basically the probability of 

finding an electron at EC should be equal to probability of not finding an electron at EV. So, 

basically, this relation implies   f(EC) = (1 – f(EV)). So, this is the probability of finding a hole 

at EV . 

 

And that is equal to probability of finding an electron at EC So, this should be equal. That 

implies you should have no I mean LHS is no, simply you have to rewrite it  

𝑓(𝐸𝐶) = 1 − 𝑓(𝐸𝑉) =  
1

1 + 𝑒(𝐸𝐶−𝐸𝐹
𝐾𝑇

)    

= 1 −  
1

𝑒(𝐸𝑉−𝐸𝐹
𝐾𝑇

)

 

So, this right hand side can be further simplified.  

And you know actually you can check it out it will turn out to be 1

1+𝑒
(𝐸𝐹−𝐸𝑉

𝐾𝑇
)

    

 . 

Basically you manage the work with the fractions and you will see this immediately. So, this 

is a expression. So, what this is telling is this particular relation, this implies that you are the 

parameters in the exponential should be equal. So, that means (EC –EF)=(EF – EV).  

 

So, that was just rearranging it. That implies, 

 𝐸𝐹 =
𝐸𝐶+𝐸𝑉

2
 

So, what this is telling you is that EF, the Fermi level for an intrinsic semiconductor lies exactly 

in the middle of the, EF is basically at the middle of the bandgap. So, this is the conclusion we 

have from this analysis. So, sometimes you know we have various ways of representing.  

 

So this is because this is only for an intrinsic semiconductor, we will actually give it a special 

name, we say that, we will call it EFi . So, when some sometimes we call it EFi, so EF of intrinsic 

or sometimes will also referred to as Ei. Ei is basically the middle of the bandgap. So, many 



ways of representing the same thing. So, this relation you know EF equal to exactly the middle 

of the bandgap is almost correct. There is a small catch.  

 

I will give you a problem in the homework, which will force you to understand that. There is a 

small deviation because of effective masses of the holes or electrons are different. So, there is 

a small change, I will give it as a homework. But anyway for all practical purposes, you can 

take the EF to be in the middle of the bandgap for semiconductor devices. Good.  

(Refer Slide Time: 13:33) 

 

So, now, we are ready to talk about quantitative numbers of electrons and holes. So, far we 

have qualitatively mentioned the physics and we said how what should happen. Now, we are 

ready to do a quantitative. To do a quantitative analysis exactly turns out to be a little bit 

involved. So, what we are going to do is take a shortcut. We are going to give you a final lesson 

which is applicable in most of the scenarios.  

 

Only when you go to certain very extreme conditions very high levels of doping, then what we 

are talking about today will not work. But I think that is really not necessary at this stage. So, 

to understand how to calculate these concentrations, we have to understand 2 things one is the 

Fermi function, which is essentially giving you the probability of finding electrons at various 

energy levels.  

 

And the second thing that we need to understand is what are the available number of states. We 

all we have been talking about this energy levels. Essentially, we said this is a band. And you 

have energy levels available, energy levels. These are all distributed along the conduction band. 



And similarly for the valence band as well you have a range of allowed levels. To understand 

what is the effective carrier concentration,  

 

For me, you know, I like to think of it in terms of a classroom, you know. Think of a class a 

large class where maybe 100 plus, 200 plus students. And you want to calculate, you know, 

how is a, how many students are there. So, that would be something equivalent to calculating 

the number of electrons in the conduction band. The way to do that would be, you know, there 

is going to be always a distribution of probability of finding students.  

 

Maybe the probability of finding students is, you know, high in the front of the class. But as 

you go towards the back back, the back benches, the probability might decrease. There is a 

distribution function, there is a probability distribution function. And also, the number of the 

number of seats in the tables can be thought of as the number of available states. So, if you 

look at it, the number of benches will be like, you know, maybe 2 students per bench or 2 

students per metre, 3 students per metre or something like that.  

 

You know. There will be a kind of density of states. And to calculate the exact number of 

students in the class, all I have to do is I have to take the density of states and multiplied by the 

probability function, and then sum it up. That will give you the exact number of students in a 

class. We do exactly similar thing here. What we do is we have a function log that is basically 

a function which is called as density of states function, which gives you the distribution of 

states in the conduction band and valence band.  

 

And then we have to do a little bit of mathematics to actually solve that. So, instead, what we 

will do today is that you know, if you do it exactly, can be a little bit invert. So, I am not going 

to take that approach. But what I am trying to tell you is that the carrier density is dependent 

on 2 things. One is the Fermi function, I will just write it as a F(E) and number 2, density of 

states.  

 

These are the 2 things that are going to impact your carrier densities. So, instead of doing all 

that, we will abstract it out and we will introduce 2 quantities here. You should remember these 

quantities. So, which we call us effective density of states. So, those are the expressions for 

that is given here basically. So, this you see is NC and NV. NC and NV represent the effective 

density of states for the conduction band and the valence band respectively.  



 

So, with that I mean you see that it has a bunch of constants, and one of the most important 

things is the effective mass here. The effective mass in the conduction band and the effective 

mass in the valence band. So, if you plug in the numbers, then you get the typical range of this 

effective density of states and these turn out to be about 1019. It is the typical range of effective 

density of states.  

 

But I must caution you here, these numbers are quite dependent on you know, where you take 

the data from. Because effective masses and you know, those are experimental or dependent 

on the experimental procedures. So, there can be some variations, if you look at one textbook 

might it might give you the effective density of states as some number, another textbook might 

be slightly different.  

 

But it is they are all going to give you something in the ballpark of 1019 cm-3, that will not 

change. So, fine, we have this effective density of states. So, what is the carrier density? What 

is the carrier concept? What is the concentration of electrons? What is the concentration of 

holes? Do that, what we will do is, we will just simply use the effective density of states and 

write an expression in this form.  

 

And which is the carrier density? Or if you are talking about equilibrium. Let me make a 

distinction. Let me put n0. When I say n0, I am talking about equilibrium carrier density. This 

is not going to be valid for the non equilibrium situations. In equilibrium situations  n0 = NC, I 

will talk about the non equilibrium situations in the next lecture or in the next week.  

 

Next two three lectures we will be talking about some of this, non equilibrium institutions. For 

now, we are just saying that no basically no when I say electrons and equilibrium density of 

electrons.    
𝑛𝑜 = 𝑁𝐶  𝑒−(𝐸𝐶−𝐸𝐹

𝐾𝑇
) .So,many times I find that students tend to get confused with 

the sign in the explanation here. Let me try to tell you how I remember it.  

 

So, the number of electrons is definitely going to be some fraction of the total number of states 

available. We are saying that the number of states available is basically NC. So, this is a number 

of states. So, since your carrier density has to be smaller than this, the exponential has to be 



negative. If it is positive, then actually It is going to be the electrons concentration is going to 

be higher than effective density of states, which is not realistic.  

 

And essentially what we are doing is with reference to the conduction band edge, what is the 

carrier concentration? So, what we will say is basically NC is basically EC–EF. EF is somewhere 

in between the bandgap. It is going to be somewhere between EV and EC it is going to be 

somewhere. So, depending on the distance between the EC and EF, we can find out.  

 

So for example, let us say if you take an intrinsic semiconductor let me Basically EC, this 

particular thing here. This is essentially distance from reference in eV So, now, let us consider 

the case of an intrinsic semiconductor. If you take an intrinsic semiconductor EF of an intrinsic 

semiconductor is at Ei. So, basically n0=NC.  

 

NC=3×1019 , EC – EF is at Ei or in the middle of the bandgap. So, this is going to be minus Eg 

by 2. Eg is basically how much? In this case this band gap is going to be 1.12 eV(Eg=1.12eV) 

and this distance between EC and Ei is going to be .56eV(EC-Ei =.56eV).That is the KT = .0256 

in eV units. 
𝑛0 = 3 × 1019 × 𝑒(

−.56𝑒𝑉

.0256𝑒𝑉
) ~ 1010 

 

So, if you calculate this, this will be something in the order of 1010 centimetres. And if you 

remember in the last class I mentioned that ni = 1.5×1010. So, this is where the slight variations 

in the numbers come about. The accepted value of ni = 1.5×1010. But, there is no harm even if 

you simply take 1010 in the calculations.  

 

But you have to you know, in the question generally we mentioned whether you have to use 

1010 or 1.5×1010. The answers are going to be close. So, you could do a similar analysis for 

even so n0. So, we can also write a similar expression for P0. So, let us say P0 is going to be 

now we want to find out with reference to the NV, with effective density of states for holes, 

which is NV.  

 

That is a maximum no states, you can think of. I mean not exactly. It is a maximum. It is a sort 

of maximum. So, number of holes is going to be something lower than that. So, exponential 

has to be negative. So, this is going to be minus and the distance of EF from the reference level. 



Reference level here is EV. So, the distance I want to make sure that this quantity is positive, 

so highlighted is 𝐸𝐹−𝐸𝑉

𝐾𝑇
.  

𝑃𝑜 = 𝑁𝑉  𝑒−(𝐸𝐹−𝐸𝑉
𝐾𝑇

) 

So, this is your equations for carrier concentration for electrons and for holes under equilibrium. 

These represent as I already mentioned, concentrations under equilibrium. So, I mean, you 

might say that you know, I pulled the formulas out of a hat. I kind of did. But if I want to 

introduce that entire density of states formalism, it is going to take me 2 lectures or 3 lectures.  

 

And I think that is not necessary at the introductory level. So, but at least you get the idea that 

the NC and NV are coming from basically the distribution of states in EC and EV. There is 

basically some, starting from EC, there is going to be certain distribution and we make certain 

approximations and finally come up with this constants. That is effective density of states. It is 

as if the density of states is all, in all of the states are collapsed at EC.  

 

But anyway,we will revisit that if necessary in the later stages. So, this is how you can calculate 

concentrations.  

(Refer Slide Time: 24:44) 

 

So, now we know what is equilibrium. Let me put this necessary n0 p0 .Let me do that. So, what 

is the intrinsic carrier density? We know that intrinsic carrier density is basically n0  = p0 =  ni 

So, I can simply take a product 

𝑛𝑖
2 = 𝑛0𝑝0  = 𝑁𝐶𝑁𝑉  𝑒−( 𝐸𝐶−𝐸𝐹−𝐸𝐹−𝐸𝑉

𝐾𝑇
) = 𝑁𝐶𝑁𝑉𝑒

(
−𝐸𝑔
𝐾𝑇

) 



So, we saw that you know, we saw this expression previously. When I said that, you know ni 

is going to be proportional to (Eg/KT). In fact, I said it is going to be (Eg/2KT). The reason is, 

now we have to, if you do it, ni is going to be square root of this. So, there is going to be a 2 

here. So, 

 
𝑛𝑖 = √𝑁𝐶𝑁𝑉 𝑒

(
−𝐸𝑔
2𝐾𝑇

) 

And this basically a term which we have here, √𝑁𝐶𝑁𝑉   is the constant. In the last class, we said 

it is 
𝑒(

−𝐸𝑔
2𝐾𝑇

) when we said the slope can be calculated based on that. So, this constant is going 

to be √𝑁𝐶𝑁𝑉 . So, now before I you know go forward, I want to use another form of this 

expression.  

 

Basically, let me write I would rewrite this expression. Because while NC and NV, we are 

convenient, sometimes it is also convenient for us to look at, you know the distance from the 

Ei. So, what I will do is this expression formula for n, I will rewrite it, I will do it like this. 

 

𝑛𝑜 = 𝑁𝐶  𝑒−(𝐸𝐶−𝐸𝑖+𝐸𝑖−𝐸𝐹
𝐾𝑇

) =  𝑁𝐶  𝑒−(𝐸𝐶−𝐸𝑖
𝐾𝑇

)𝑒−(𝐸𝐹−𝐸𝑖
𝐾𝑇

) 

 

So, when I do this, I can call this entire term. Basically, you have EC-Ei is simply nothing but 

Fermi level of intrinsic semiconductor.  

 

So I will call this as  
𝑛𝑖 =  𝑒

(
𝐸𝐹−𝐸𝑖

𝐾𝑇
) So what we are doing is here, this is telling you the reference 

has changed now. So, basically, this reference level is Ei .That is where we are seeing the 

concentration of what is the concentration possibility of Ei? It is going to be ni . And 

exponential. So, whenever you have a certain amount of doping, it is simply going to EF is 

going to go away.  

 

We will have to talk about how the EF changes, but that term actually, for anti doping, it will 

increase. So, EF will be going higher. So, this exponential term will actually become positive 

and overall you get that n0 here. And similarly, 

                                                            
𝑃0 =  𝑒

(
𝐸𝑖−𝐸𝐹

𝐾𝑇
) 

So, I mean, I am just trying to tell you how I remember it. You could also try to come up with 

your own ways of remembering it.  



 

But It is essential that you remember these formulas because we will use them routinely. Come 

up with any logical approach of remembering this it should be fine.  


