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This document is intended to accompany the lecture videos of the course “Introduction to Semiconductor 

Devices” offered by Dr. Naresh Emani on the NPTEL platform.  It has been our effort to remove 

ambiguities and make the document readable. However, there may be some inadvertent errors. The reader 

is advised to refer to the original lecture video if he/she needs any clarification.  

 

Hello, everyone, welcome back to Introduction to semiconductor devices. This is lecture 4. So, 

in the last lecture, we were talking about how we can visualise a 2D bonding model, which 

shows you how silicon atoms are bonded in a lattice. And then after that, we talked about how 

electron hole pairs are produced by various generation processes. And in the end, we covered 

the differences between direct and indirect bandgap semiconductors. So, today, we will try to 

understand more about carrier properties in semiconductors.  

(Refer Slide Time: 00:48) 

 

To do that, we will start with a concept known as effective mass in the semiconductors. So, we 

have already seen this E-k diagram. This is a indirect bandgap semiconductor, which is silicon. 

So, we ask ourselves the question, how does the carrier move in a semiconductor like this? For 

example, if I take a case of a electron moving between 2 metallic plates, let us just imagine a 

metallic plate with certain voltage.  

 



And then I will apply another metallic plate. And then between them, let us say I put one of 

them at +1 volt, and the other one I ground it and now I place a electron in between that plates. 

So, of course, you know the electron moves in response to the field. So, how would you 

describe this? This we will describe using Newton’s laws.  

𝐹 = 𝑚𝑎 = 𝑞𝐸 

What is the mass here we use? We use the mass of the electron. This is mass of the electron. 

So, this is how electron behaves in free space. But now how does it behave in a semiconductor? 

So let us imagine a piece of semiconductor. So, I take this, I do the same thing. I ground one 

side. On the other side, I apply let us say positive 1 Volt. So, now the question is, how does the 

electron behave in this?  

 

How does an electron move in a semiconductor? To answer this, we need to understand what 

are the various forces acting on the electron? So what are the types we can think of? Of course, 

you know, there are no let me say forces on an electron in semiconductor. Let us make it 

semiconductors semi C. So, we have first one, they have external force, which is essentially 

the applied electric field.  

 

In addition, we have an internal force, forces due to the crystal, So let us say there, there are 

this f internal, which are essentially you know electron is going to feel you know, the crystal 

potential. The lattice potential it will feel, and it will also undergo some scattering events, you 

know. Because electron is, let us say, moving in one direction, it can undergo a scattering with 

a lattice site and then it can change directions.  

 

So the, the forces are quite complex for us to visualise. But let us say this F internal essentially 

encapsulate all of them. And we say that this is basically a complex lattice, lattice forces or 

crystal, whatever you want to call it, forces. These are this F internal. So, now, how does 

electron behave in this environment? It is going to be quite challenging if you want to monitor 

every single electron which is moving in a crystal.  

 

If you would like to monitor it is going to be quite challenging, it is impossible. So, what we 

will do is, we will introduce a concept known as effective mass. What we will say is just like 

the Newton’s second law, F= ma. And we will write now, you know, basically this, both of 

them is F total. So, basically F total will be equal to mass times acceleration. It is the real mass.  

 



But what we will say is, we will introduce a concept of effective mass and we say 

𝐹𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 = 𝑚∗𝑎 

. So, basically, this particular  𝑚∗  which you know we will call as effective mass. So, what 

does it do? With m star it is essentially capturing whatever is the effect of the crystal or lattice. 

All the forces and everything it will capture and then eventually it will simply give you one 

number which is going to be the proportionality between external force and of the electron, the 

acceleration of the electron.  

 

So, m star is captures the effect of lattice. This is what it does. How can we do that? So, the 

way it is done is all this you know, lattice potential and how electron moves in that is all 

captured into the E-k relation. So, we will use this. So, we will use the basically the goal now 

is how to calculate the effective mass using, use E-k relation to calculate effective mass. This 

we can do because you know at least qualitatively we can think about it.  

 

The E k relation is all result of what, how the energies are changing with momentum and all 

that in a crystal. So, E-k relation we will use. How do we do that?  
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It is fairly simple actually. So, what you are seeing here is you know we already mentioned 

that electron has at least you know, electron in free space has a parabolic dispersion. And we 

also said that, ah when you look at the E-k relation for example, here, around the edges for 

example, here, the dispersion is still parabolic. So, we said these 2 in a positive and negative E 

k are in an essentially 2 different directions.  

 



So, around the edges, band edges you know be it the top of the valence band or the bottom of 

the conduction band, it still exhibits, it can be approximated as a parabolic dispersion. So, we 

will use the ideas that we have learned in the past. So, this is just, let us say you have parabolic 

dispersion, how can we estimate the mass, effective mass from that. So, let us do one thing. 

Let us compute 𝑑𝐸

𝑑𝑘

. 

 

If you do this, essentially it will be, I am taking the derivative of the dispersion. So, it will be  

𝑑𝐸

𝑑𝑘
=

ħ2𝑘

𝑚

 

So, now, you might recollect, you know that we define we know classically 𝑝 =  𝑚𝑣 = ħ𝑘. 

And we said quantum mechanically that would be ħ𝑘. So, if you want to define a quantum 

mechanical analogue of velocity, what you need to do is simply say velocity should be quantum 

mechanically mass.  

 

So, this is what you can do to define a quantum mechanical analogue of velocity. So, by 

combining, let us call this as 2. Let us call this as 1. By combining 1 and 2, we can write velocity 

of a particle travelling in a band, if you are talking about conduction band, you are talking about 

electrons, if you are talking about the valence band, then we will talk about the holes. So, 

velocity of a particle =   ħ𝑘

𝑚
=  

1

ħ

𝑑𝐸

𝑑𝑘

.  

 

. So, this is fairly you know, simple. So, what we have to do is simply take the first derivative 

of the E-k diagram, E-k relation. If you do that you get the velocity of the particle. Once you 

know that, you know if you want to say at k = 0 you want to compute then you will substitute 

k = 0 and you get the velocity of the particle at the zero point or at the edge of the band you 

can get that  

 

So, this is how we know we can actually calculate how carriers move in a semiconductor. We 

can do one more thing. We can take the second derivative. Let us try that. So 

                                  𝑑2𝐸

𝑑𝑘2
=

ħ2

𝑚
 ⟹

1

𝑚∗
=

1

ħ2

𝑑2𝐸

𝑑𝑘2

 

 



So what this is telling you is, so what this is telling you is that the effect, no, we call the second 

derivative inverse of the second derivative as the effective mass. That is all you have to do. So, 

this 𝑚∗, we will basically have, you know, this is the effective mass. So, if you are talking 

about valence band, relay, we will denote it as  𝑚ℎ
∗ . So, mass of the whole   𝑚ℎ

∗ , effective 

mass of whole.  

 

You are talking about conduction band, we will say it is  𝑚𝑒
∗, which is effective mass of the 

electron. So, this is how we can simply calculate effective masses. So, let me take an example. 

So, what I am doing here on the left is a problem from the textbook I just picked it up. And I 

will also give you a couple of more problems in the homework. You should try out.  

 

So, what you have is parabolic relations, 2 parabolic relations  two different semiconductors. 

Let us say A and B have the dispersion diagrams, which are given E k relations which are given 

here. So, now what is the effective mass or which one has a higher effective mass? So, we have 

seen that effective mass is inversely related to the curvature. So, higher the curvature of the 

band second derivative , you see the curvature right ?  

 

So, if you have higher second derivative, higher curvature, you have lower effective mass. So, 

in that sense, if you look at this picture, you can immediately analyse that here  from when you 

go from A to B, the curvature is increasing. So, effective mass  𝑚∗ , should reduce So, 

basically, in other words, 𝑚∗ of B should be less than 𝑚∗, of A, the reason we can say that is 

B has more curvature so, lesser effective mass.  

 

We can also calculate exactly. This is qualitatively you can immediately see the curvature of 

the bands and decide this, we can also calculate it. So, here, let us say there is a dispersion 

relation given and then the case given the number k at the edge of the band is.08 per Angstrom. 

So, we can calculate it, how do we do that? Again, simple mathematics. So, basically, this is a 

parabolic dispersion.  

 

You could write it as simply e is equal to I can write it as  

𝐸 − 𝐸𝑐 = 𝑐𝑘2 



equal to, I do not know what the coefficient is, but I know it is parabolic, so, what I am doing,. 

Ec basically edge of the conduction band. Sometimes these bands can be shifted to account for 

that we are doing.  

 

In this case so, in this particular case, Ec is going to be Ec = 0. Because conduction band 

minimum is at 0, this is basically Ec here. So, we do not need to worry about that. So,  

𝐸 = 𝑐𝑘2 

 

So, what is the effective mass? We have to take the second derivative. So, let us take the second 

derivative of this guy.  

𝑑2𝐸

𝑑𝑘2
= 2𝐶

 

 

So, what I can do is, I can combine my relations you know I have this  relation from here and 

then I have this relation. I can combine them and I can define basically  

 

𝑚∗ =
ħ2

2𝑐

 

I think this should be fairly correct. So, h cross square by d by dK square so that h cross square 

by d. This is the relation. So, given any dispersion we can calculate the effective mass.  

 

And one more small point I want to know before I move to the next topic. That is when we say 

effective mass so, we know me is basically mass of electron is 9.1 × 10−31 kgs , this is massive 

electron. So, whenever we say effective mass many times you see that in the textbooks they 

refer to the ratio of  𝑚∗

𝑚𝑒

 So, 𝑚∗ 

𝑚𝑒

is what a lot of times you see in the textbooks.  

 

So, it will be some number like maybe you know 0.3, 2.5 something. It can depend. These are 

very much dependent on the orientation in the crystal line you know, a lot of factors actually. 

So, basically we just refer to the ratio and that means, we are just you know, to get the actual 

mass, effective mass you have to multiply by 𝑚𝑒
. Please make sure you remember that is all. 

So, this is about effective mass. 

 


