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Hello everyone so far in the previous lecture we have discussed about how electromagnetic 

wave propagates please increase space and lossless dielectric medium as well as lossy 

medium. So, when we discussed about lossy medium we just additionally consider that sigma 

that is conductivity is not equal to 0 some conductivities there and using that actually we 

could find out that the propagation constant could be modified as alpha + j beta.  

 

It will have a real part and complex part imaginary part real part is alpha that contributes to 

loss as it propagates and beta actually contributes the imaginary part contributes to the phase 

that is your phase constant as it propagates. So, that is what we have discussed in the previous 

lecture. So, now, we will be discussing about electromagnetic waves or wave propagation. 

Light wave propagation I mean to say in metals and semiconductors.  

 

So, as you know there is a some distinction some differences are there in metals and 

semiconductors. So, metals you know that if we just think of a band diagram suppose this is 

at any x axis is something partition and then y axis if you just consider energy of electrons 

inside the metal or material then we know that there is a band always energies, energy of 

electrons inside metals it is like a band.  



 

So, from here to here, this is called band anywhere any energy states it can take electron and 

you can have sometimes there is a gap. So, called band gap and then you can have another 

band also. So, you can think of some other band, if you just think about this thing. So, this is 

band gap and then it can have another energy bands will be there. So, typically in electron in 

metals particularly if you just consider metals.  

 

If you see the top most band all the energy lines energy solutions whatever you get within the 

band, they may not be occupied and you can see that up to this point everywhere you can see 

anywhere the electron is there. So, some kind of electron density you can consider n will be 

there and that will be occupied up to some levels and above that in this region for example, 

slowly, slowly it will be reduced the density and higher energy state following so, called 

Boltzmann distribution.  

 

So, you can think of that density more density will be at the lower energy levels and slowly, 

slowly it will be reduced at the higher energy level. So, density of states accordingly and 

according to your so called Boltzmann distribution or permit Dirac distribution you can say 

that will be distributed. So, in that case normally any electric field if you apply that can be 

electromagnetic wave there can be some E c to certain fields.  

 

Then electrons can actually energize and they can be easily movable, they can conduct 

current that is why some metal you will see that the conductivity sigma whatever they 

consider your sigma that will be very large that can be large basically for metal. However, for 

semiconductors if you see that the gap there is a clear band is there, but sometimes what 

happens that the gap is a little bit it is a small not so large.  

 

If it is small then what happens the upper 2 bands if you are just considering this one and this 

one what happened some electrons from the this is supposed to be completely filled this band 

some electrons, it can go to the higher band were supposed to be empty at low temperature, 

but at room temperature electrons can go. So, you can see some kind of electrons here 

occupying at room temperature and here some empty space will be empty point will be there 

some vacancy will be there.  

 



So, in that case, normally these are electrons energized from the room temperature, lattice 

vibration etcetera it can take. So, you can say some carrier electron is here and here you know 

huge amount of energy bands energy solutions will be there. So, electron can occupy and 

they can actually freely move up they can little bit energize also they can move. So, they can 

contribute here electron will contribute in that this is called conduction band.  

 

So, called I can write conduction band, this is conduction band and this can be called as a 

valance band. So, in semiconductor you know conduction band and valence band will be 

there and this will be your so called bottom of the conduction band energy and this can be 

called as a top of the valence band energy and we call this E g = E c – E v. For example, in 

case of silicon this E c – E v equal to about 1.12 electron volt.  

 

So, that is the band gap. So, it will be silicon up to here you can see some kind of band that is 

called conduction, valence band and then there is a gap of up to 1.12 electron volt then you 

can have a conduction band. So, some electrons can easily overcome this 1.12 electron volt at 

room temperature and that they can occupy in the conduction band. So, that is why it can be 

somehow some carrier will be there in the conduction band and some holes. So, called holes 

this will be called as holes will be in their valance band.  

 

So, in that case both electron and hole can contribute. So, we can say for electron we can 

write n and for hole we can write sigma. So, we can have conductivity. However, this 

conductivity you can control also if you for example, if it is silicon what happens you can 

have a some kind of dopant like pentavalent silicon normally pentavalent atoms are their 

crystalline structure.  

 

So, if you adjust to doping silicon with some for example, phosphorus pentavalent then this 

fifth electron, electronic states normally comes very close to conduction band energy 

solutions comes very close to conduction band. So, in that case these energy separation from 

the bottom of the conduction band it is very small. So, easily that electron can contribute to 

the conduction band and you can get a lot of electrons in the conduction band free electrons.  

 

So, in this way this will be called an n type semiconductor and thus you can contribute 

conductivity in sigma n. Again if you doped atoms like boron, then you can get boron you 

know this is a trivalent atom. So, you can see when it is just a bound inside the silicon crystal 



that means, occupying a side sub silicon then the fourth electron is actually shortage in boron, 

boron in valence electrons there are 3 normally silicon valence electrons are 4.  

 

So, that fourth electron, which is not available in boron that will occupy a state somewhere 

here just above the valence band. So, in that case some electrons can easily energize and 

occupy that energy and it will be attached to boron. That is why negative ions will be 

immobile negative ions will be created and in return in the valence band you see empty 

space. So, some shortage of electrons.  

 

So, that is how we can say that those were electrons are not available they are holes basically. 

So, in that case it will be called p type semiconductor and you can also contribute 

conductivity in holes. So, that is how basically whether it is a metal or semiconductor, then 

they can be just approximately consider as a material with having some kind of sigma which 

actually contributes to similar equivalent to your whatever we discussed earlier dielectric, 

lossy dielectrics.  

 

So, some sigma value you have to consider not equal to 0 you have to consider and you have 

to treat your electromagnetic wave accordingly. So, there is a one third situation you can 

think of. Suppose the same thing you are not dope silicon for example, if it is not doped at all 

it is intrinsic and very little amount of electrons will be available in the conduction band and 

very little amount of holes will be available in the valance land. So, the sigma will be slightly 

lower it is kind of not so high like conductor.  

 

So, it is not doped at all whatever carrier you will see in the conduction band and valence 

band that is because of the thermal excitations. So, in that case, if any electromagnetic wave 

propagates here, which electromagnetic wave if it is propagating through the material, this is 

your position I am saying that everywhere energy electrons will be occupying this band and 

conduction band there will be 3 things will be there.  

 

So, you pay electromagnetic waves propagating the light for example, electromagnetic wave 

light wave if you know light wave you can imagine quantum mechanically that is a stream of 

photons and that stream of photons normally h nu energy will be h nu equal to h nu and 

sometimes you can call h / 2 pi times 2 pi nu and h / 2 pi we call it h cut and 2 pi nu means 

angular frequency h cut. So, that is the energy of a photon.  



 

If this energy of a photon you can calculate energy of a photon if lambda = 1550 for example, 

1550 nanometer then this energy you can consider basically this can be considered as hC / 

lambda. So, C the Planck constant and lambda then you can calculate the energy if this 

photon energy h cut omega is less than E g band gap then that electromagnetic wave it will be 

actually can propagate inside the semiconductor also.  

 

If the photon energy less than band gap by the way then it can propagate as if it is like a loss 

less dielectric medium. So, even though it is a semiconductor like silicon, germanium, 

gallium arsenide if you are treating and if it is undoped at all completely undoped intrinsic 

material and any electromagnetic wave consider if you consider a stream of photons and 

photon energy is just less than band gap energy then that semiconductor that particular 

semiconductor it can be silicon it can be gallium arsenide it can be germanium.  

 

That can be considered as a just lossless dielectric medium. However, when it propagates of 

course, what happens if h cut omega greater than E g, it can happen because you notice 

higher the electron in the valence band can absorb the photon energy and photon will be 

destroyed and then that electron can go up. So, you can create 1 electron here and 1 hole here, 

1 electron will be here and 1 hole will be in the valence band. So, electron hole pair will be 

generated.  

 

So, in that case you will see some kind of certain kind of absorption. So, one thing is the 

absorption I will be talking because that absorption and sometimes also what happens if a 

certain condition is created the electron can reoccupy the hole and can emit again photon. So, 

this type of absorption, emission can happen also photon absorption photon emission can 

happen and that is normally quantum mechanical phenomena.  

 

We will be discussing that later we will be discussing when we shall discuss about laser diode 

and photo diode. For the moment we can consider that semiconductor as a dielectric material 

for electromagnetic wave having energy photon energy less than band gap and in that case, 

you know that this can be considered as a dielectric dope, but never, you have to consider 

also there are some electrons because of the thermal excitation etcetera will be there.  

 



That electron in the conduction band and some holes in the valence band they can contribute 

some kind of conductivity. So, that conductivity you can consider it is not completely lossless 

dielectric, it is a kind of lossy dielectric material medium. So, with this understanding that the 

conductivity band gap transparencies, all those types of things, if we consider, then we can 

think that electromagnetic wave when it is propagating inside the material, whether it is a 

metal and it is a semiconductor how that behaves.  

 

So, normally it is slightly different than what we have discussed, when we consider the lossy 

medium that sigma is there. The reason being both metals and semiconductor metals you 

know that what you call that the conductivity can be very large and semiconductor also if you 

dope or even room temperature it has certain kinds of conductivity. So, depending on the 

conductivity you can see that certain frequency range it may transmit.  

 

And sometimes you can see that the velocity of electromagnetic wave phase inside the 

material within metal and semiconductor depending on the conductivity and so, on, they will 

travel with different velocity different frequency, different velocity. So, they will there will 

be some kind of material dispersion all these we think we need to discuss because we have to 

deal all the semiconductor as a dielectric material, semiconductor dielectric material, metal. 

 

All these things you need for developing your photonic integrated circuit especially when you 

talk about CMOS electronics and CMOS compatible photonics circuit you need to deal all 

these materials. So, we need to know how they react how they behave all these material as a 

function of frequencies as far as lightweight propagation is concerned. Let us move on.  
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So, you know, if you want to discuss about so called light waves or electromagnetic waves 

governed by Maxwell's equation that is constantly continuously insisting and even though 

these are the Maxwell's equations, I am just repeating here. So, that these equations you can 

always follow and refer following the discussion when I discuss different phenomena. So, 

now, you see, metals are in general, these are the property whatever we discussed so far it is a 

non-magnetic material.  

 

So, here when I am just considering B = mu H = mu 0 mu r H magnetic field this most of the 

time whatever metal we use, they are non-magnetic that is I mean what should be equal to 1 

you can directly you can use that and conductivity which I consider that is your very high, but 

that conductivity you can have an expression what is that that is n is the density of electron 

free electron I mean to say and e is the electronic charge and tau is the tau is a very important 

thing.  

 

This is basically called the relaxation time or whenever you apply electric field sometimes 

what happens even though you are not applying electric field, the electrons metal in the metal 

they are like a free they are just like a Brownian motion and they will be when they are just 

randomly moving around, they can actually somehow sometimes it can scatter out of the 

lattice points and that is the collision they can collide with the lattice points.  

 

So, in that case, it will suddenly it will stop its motion and then again it will start taking up 

the energy. So, that type of situation in time be taken between 2 collision is called the 

relaxation time tau. Typically that is 10 to the power -14 second in case of meta where 



density is very high and m is of course, we can say that mass electronic mass and if it is free 

completely free, it is 9.1 into 10 to the power -31 kg and sometimes you can modify this mass 

because of the inside material medium.  

 

We have a little bit potential so called periodic potential will modify the mass that will be 

called effective mass. In that case, I picked the mask can be higher than this or can be lower 

than that depending on this dispersion relation inside, I am not going into that right now. So, 

now you know we can find the conductivity of you know the density of electrons and also the 

relaxation time there are various experimental techniques you can find that you can use them 

to find out the conductivity.  

 

Here I have just given 1 table directly taken from textbook, where we see that aluminium 

copper, gold and silver these are the material normally used typically used in any electronics 

CMOS electrons particularly aluminium and copper is very popular they are frequently used 

in CMOS industry, if you see the P carrier concentration electron P electron concentration it 

is in the order of 18 into 10 to the 22 per centimeter cube it is very large and copper is 

slightly lower.  

 

However, if you see conductivity see major or calculate depending on the effective mass as 

well as tau, you see copper conductivity is higher relatively higher. This is actually 3.5 into 

10 to the power of 5 say per ohm per centimeter per ohm means sometimes it is called mho 

sometimes it is called Siemens per centimeter and so on. Different units you can use, but 

typically in SI units we can just write like this. So, these are the conductivity and this is a 

much much higher than it is then 0 10 to the power of 5.  

 

In case of dielectric where no free electrons are there this is completely 0. So, you can 

imagine this can contribute a lot of losses inside the material medium just simply you can 

conclude and if you are just considering silicon normally in silicon you can go doping 

concentration in the order of 10 to the power 19 to 10 to the power 20 per centimeter cube 20. 

Normally, in a crystal silicon crystal the atomic density is in the order of 10 to the power 22.  

 

So, you can replace maybe every 100 silicon atoms 1 boron on phosphorus you can replace 

still you can maintain a silicon crystalline structure and then once you dope you can get this 

type of concentration. So, this type of concentration also you can put and you can try to find 



out the so called conductivity typically in case of semiconductor conductivity you are writing 

like this n e mu so called mobility. What is that mobility? Mobility actually expressed by this 

one.  

 

So, you know drift velocity of electron insight crystal it is proportional to electric field you 

apply because if you apply electric field electron will start moving and that is called that is 

somehow called drift velocity and that will be no typically it is proportional, but this 

proportional constant we write as mobility. Electric field and drift velocity. So, once you 

know the mobility then you can write any mu normally this mu stands for e tau / m that is 

what you are getting sigma = n e square tau / m.  

 

So, in case of semiconductor and metal you can treat alike as long as you are considering the 

carrier concentration doped semiconductor or some intrinsic and also metals with high 

concentrations electron, free electrons etcetera you can be you can treat it alike. So, now one 

important conclusion here we will just try to show that in case of metal or semiconductor. 

You we know that any electromagnetic wave propagation inside the material medium we 

need to know 3 parameters sigma, epsilon and mu.  

 

In case of semiconductor or conductor we know that this is nothing but mu 0. Mu r = 1 and 

normally this we consider epsilon or epsilon 0 and sigma that is what under consideration. 

We will so that when electromagnetic wave propagates particularly at higher frequencies, 

optical frequencies that time the sigma and epsilon are they are somehow they properties 

somehow somewhat blurred you can actually relate sigma with epsilon r depending on the 

sigma you can actually estimate what is the epsilon r actually.  

 

Frankly speaking electromagnetic wave propagation in metals or semiconductors, heavily 

doped semiconductors whatever you can consider doped semiconductor doped semiconductor 

they can be explained by either of epsilon or sigma that is what the conclusion we will see. 

So, let us move on really quick modify towards that point, because you know in a 

semiconductor and some metal you have us talking about a lot of free electrons.  

 

So, that free electrons when it moves, it is not completely free of course from the metal or 

semiconductor metal or conductor because electrons in that case, if it is completely free, it 

will come out outside the metal somehow wondered. So, we actually when we are talking 



about the Maxwell's equation particularly Gauss equation here there we actually decompose 

the charge basically.  

 

So, divergence D equal to charge density that we consider as a 2 part one is called charge 

external and charge external you can think of something it is a free or something incoming 

excess carrier related to that and rho internal that is related to somehow it is part that is 

bonded to lattice points or somewhat internal polarization you can think of. So, we can call it 

external charge internal charge and similarly.  

 

Particularly rho v we are considering a dielectric or free space that some charges they are in 

that case we can consider rho external or whatever things comes and internal the internal 

charge will be instead of rho v, we are just decomposing into 2 parts and similarly, if we see 

this equation, you have current density which is actually so called sigma times e that is 

actually the conduction current and that is how you are getting the current density.  

 

That current density also you can think of about some kind of external current density as well 

as internal current density typically J c, we can just think of the external and we are just 

adding internal. So, we are just trying to see semiconductor and conductor this 2 part of 

charged density can happen when electromagnetic wave is propagating one is external and 

other is internal.  

 

So, then this displacement vector what we are showing here expression we have discussed 

earlier. From there, if we just click a bit move on just that, we know that divergence D equal 

to divergence of divergence if we just try to write then divergence of this part also. So, if you 

just put down that thing, then you can say divergence both divergence D you are writing 

divergence D plus equal to divergence of E epsilon 0 plus divergence of p that is both sides.  

 

If you are taking divergence and if you are just considering this rho total charge; then we can 

say that this divergence E basically epsilon 0 E that actually gives you the total charge. So, 

this will be like this divergence D equal to if you are writing that is total charge then 

divergence equal to rho total / epsilon 0. So, if you are just writing this one as total charge 

with the electric field and epsilon 0 whatever the things are coming that is actually total 

charge.  

 



This total charge actual contribution coming from your internal and external that is what the 

understanding modelling. So, if you are just putting this one here like this, then obviously, 

divergence p that means the polarization density and its divergence if you are taking that is 

nothing but -rho internal. So, rho internal whatever we are trying to define that internal 

charge that is because of the polarization density.  

 

Polarization density means, you are just applying electric field then you have a electronic a 

little bit displaced with respect to the atom and then you can create a dipole moment dipole 

moment per unit volume that is actually called polarization. That is that polarization happens 

because of the charge separation. So, you if you are taking divergence of p at any point, if 

you are just talking divergence p what about the polarization.  

 

You have you are just taking divergence then you can just consider that is nothing but the 

charge internal charge and negative charge that is how you can just incorporate rho external 

rho internal. So, because of the polarization density you are having additional charge that is 

how must be added to the external charge that is the whole idea. Now, if you are just 

considering continue to equation you know charge conservation you know charge current 

density and you have current density that means divergence of j.  

 

How much current is diverging out if you are at any point if you are trying to find at that 

particular point suppose all the current density if you are just putting divergence at any point, 

then what you can see that, that particular point what is the charge rate of change of charge 

density. So, the rate of change of charge density that must be negative that should be reduced, 

that is why you see the current diverging out.  

 

So, we write divergence j equal to - del rho / del t. That is how we call it as charge 

conservation. So, if you are just again know that rho equal to rho external current equal to 

divergence j, j equal to j external and j internal in that case if I write this one per internal case 

then I can say that del rho internal / del t. Whenever I am taking internal current density I 

have to write internal charge.  

 

So, that means, this internal charge variations we can say that we have already discussed 

earlier here rho internal is a divergence p. So, if I just put here divergence p del rho del t so, I 

can write that divergence I can take it out. So, this one I am writing del del t times divergence 



of p and minus sign will be there. So, what I can say this this one I can take it outside and 

because it is a space dependent del equal to del del x del del y del del z 3 different direction 

and del del t I have taken.  

 

So, this one I can write here. So, comparing these 2 I can easily write that j internal equal to 

del p del t. So, internal current density we can say that it is a polarization rate of change of 

polarization density rate of change of polarization density we can define as a internal current 

density.  
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Let us see, let us move on. So, I have just written down all these things concept. So, what is 

the internal current density and divergence p equal to this one this may be useful for further 

discussion that is why I have just written this side and let us see this conclusion that is a very 

interesting point. You see, since optical response in metals of course, doped semiconductor I 

should be also consider doped semiconductor is like a metal. 

 

Because concentration can go up to 10 to the power 19 20 so on strongly depends on 

frequency we need to consider non-locality response in terms of space and time by 

generalizing linear relationship. So, you understand that your electromagnetic wave or 

electric field is an oscillating electric field associated to electromagnetic wave it is oscillating 

and if it oscillates very fast then what happens some effect in a material medium that 

polarisation density which is the result of electric field oscillation. 

 



That can be that you cannot consider very local phenomena, because something you are 

electrical these oscillating here, but material will response it will take little more time and as 

the electromagnetic wave propagates inside the material medium, so you can think about that 

something happening in surrounding region that also will affect polarisation density 

elsewhere. 

 

So, that is why we redefine we have to consider whenever we are talking about very high 

frequency optical frequencies, then this dense displacement vector we have to consider this 

thing you know this is epsilon multiplied by E epsilon 0 epsilon r is epsilon. So, that is what 

this one will consider this one epsilon that is epsilon 0 epsilon r. But what we have to do we 

have to integrate suppose I want to find out displacement vector at position r at instant time t. 

 

Then I have to consider all other position vectors. These are that vectors, r prime r - r prime 

and you have to consider also r prime t prime every other points what is the electric field that 

also contributes to the dielectric constant r. So this is r prime and P prime is the variable, I am 

just integrating all positions electric field I am integrating and that how you are getting here 

you have to take convolution. 

 

Then you can get the displacement vector. Similarly, for current density, we know sigma E 

sigma times E is the everywhere you are bearing r dr dt and you are trying to find out what is 

the value at r and t conductivity so this in principle, you have to take this one for your 

consideration of displacement vector and current density here we are considering internal 

current density as we discussed earlier. 

 

And then you will see by taking Fourier transform with respect to plane waves, you know 

plane waves we are considered we normally consider e to the power j omega t - k dot r that is 

a plane wave you can write E 0 and you can have some polarisation and so on this is power of 

propagating plane wave and you can also write forward propagating plane wave like this e to 

the power j k dot r - omega t. 

 

So, this can be a plane wave because the power propagating the sign I have changed only 

minus sign I have just multiplied. So, that also will be considered a polar propagating earlier 

we have discussed this. So, what we have to do if we just take a Fourier transform of this then 



position and time 2 variable Fourier transform if we adjust considering position is the real 

space there that will actually convert it into k space. 

 

That means k you normally you know k = 2 pi / lambda, lambda is the reciprocal space 

lambda length the space and time will convert into frequency. So, in Fourier domain the 

convolution is nothing but just simple multiplication. So, epsilon 0, epsilon r you just take a 

Fourier transform of this one and that that will be k omega and so r will be converted in k 

omega and e will be k omega so just multiplication it is just as simple principle of 

convolution and Fourier transform. 

 

Similarly, internal current density you can write like this. So, in frequency domain not a 

Fourier domain we are Fourier this is actually whatever we consider in time domain 

considering non localization and here we are considering just Fourier domain that if we know 

that what is the dielectric constant as a function of frequency and wave vector and electric 

field as a function of k and web vector that then we can just write like this a straight forward.  
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Now, let us try a little differently you take this one and take time derivative partial derivative 

because D can be space dependent as well as time dependent we just take a partial derivative. 

So, both sides partial derivative then it will be del p / del t and del p / del t we know that is 

nothing but the current density internal current density. So, we write down here and then del 

del t we know that are plane wave E to the j omega t barriers like j omega t del del t j omega 

we have used earlier. 

 



Also and if we use that one then what I write del del t j omega epsilon 0 epsilon r k omega E 

k w. So D value we have already explained here this one and j also we already defined like 

this in Fourier domain. So, del del t I have written j omega epsilon 0 I have written epsilon 0 

as it is and then del del t j omega = E k omega E of k omega and then j internal = sigma of k 

omega and E of k omega sigma t. 

 

So that is how we can define and with a little modification you just E E cancel, E cancel here 

then you can j omega j omega cancel you can just write the j omega here epsilon 0 epsilon 0 

cancel you can write epsilon 0 here. So you get a nice expression like this. So this is the thing 

I was trying to explain in the beginning the fundamental relationship between dielectric 

constant and conductivity if you know the conductivity. 

 

Then you can know the dielectric constant at a particular frequency by the way this 

conductivity can be also you can think of sigma 1 j sigma 2, if it is real part and complex part, 

then you can also consider this epsilon r can be represented here. So that means you can 

either you need to know what is the value of sigma or you need to know what is the value of 

epsilon r. So either of them is useful to explain the polarisation internal polarisation and 

electromagnetic wave whatever they dispersion relations that is I am going to discuss a little 

while later, hopefully it is going good. 
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So, now I have written down that expression what about that sigma and dielectric constant 

their relationship you know specially local response corresponding to k = 0 what is k, k we 

know that k = 2 pi / lambda. So, lambda if it is very large then k value will tends to be 0 or at 



very long wavelength region that is what I mean then particularly that lambda if you are 

considering with respect to the lattice point whatever the electron motions etcetera. 

 

We are considering that lambda if it is much larger than that spacing's it can be considered a 

homogeneous medium as if. So, in that case we can say that epsilon k = 0, k = 0 means I am 

writing 0 omega, simply we can write epsilon r omega. So for long wavelength long 

wavelength means, you know long wavelength means frequency is sort, sort of frequency 

range so, you can simply write that. 

 

So at very low frequency epsilon r is usually used for the description of the response of 

bound charges to a driving field leading to an electrical polarisation while sigma described 

the contribution for pre charges to the current flow that is the low frequency when it is 

happening. So, we can consider this one you can just distinguish that e r omega that is 

actually like a result of your polarisation dipole moment etcetera it is created that 

contribution. 

 

But the conductivity part you can just distinctly you can consider that there that actually 

contributes to your current, current can flow. But at optical frequencies when omega is very 

high, the distinction between bound and free charges is blurred you cannot distinguish 

because this polarisation actually because of the bound states and pre electrons that will be 

contributing to the conduction. 

 

So earlier for low frequency they can respond separately conduction current as well as your 

polarisation etcetera you can think but for high frequency this thing will be you cannot really 

distinguish the difference I will discuss that that is going to be discussed, for a high doped 

semiconductor highly doped semiconductor that is again and again I am saying that is like a 

metal the response of the bound valence electrons could be lumped into static dielectric 

constant delta epsilon r. 

 

Whatever the bound electrons are there in semiconductor you know there will be free carrier 

and then bound electrons will be there also they can also concept they can actually result into 

certain kind of dielectric constant. So, that thing if you are considering delta epsilon r and the 

response or the conduction electrons sigma does resulting into what you are getting you are 

saying epsilon r this is a lump 1.  



So, instead of 1 we are just adding delta epsilon r that is actually but the bound electrons and 

whatever the sigma it is there we have written or you can say that delta epsilon you do not 

need to put that bound state will little bit modification that you can put as it is 1 earlier 

whatever it is written here, 1 we can write but the sigma prime but conductivity that can be 

modified like this. 

 

If you can modify this one and then if you just put here sigma value then it will be giving you 

same results. So in that case you do not need to consider what is the additional epsilon r 

because of the bound states are not only thing you have to consider your conductivity is 

changed. That is it. So, that is the whole idea, some textbook they consider something like 

this. 
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Now, so metals I just pass it a little farther is a very interesting part. So, I am just considering 

that whatever sigma or epsilon r whatever you are getting this is the expression you can just 

say that it must be because j is there. So it has a real part imaginary part clearly is there. So, I 

can say that sigma can be sigma prime that can be considered like a real part imaginary part 

that real part will be again adding here. 

 

So you can have a real part and imaginary part that is what and then next level I know that 

refractive index is square root of epsilon r that is what we discussed earlier, then we can say 

that here in this particular case because it is a complex we say that complex refractive index 

can have a real part of the refractive index and the imaginary part of the refractive index this 

imaginary part of refractive index sometimes it is called extinction coefficient. 



 

We will discuss that a little later this that is a special name extinction coefficient and then you 

will see that this 2 if you just compare you know that square root of this one square root of 

this one that means, you are getting this one square root if you are getting this one, so you 

need to square root this one. So normally in complex numbers you will know that how to find 

out what is the square root if you are taking real part and imaginary part you can find out 

epsilon 1 you can have n square - kappa square epsilon 2 is 2 n k. 

 

Just you square it then you just equate it if you just square it will be n square - kappa square + 

j 2 n kappa. So if you square that is a dielectric constant that this means, epsilon 1 and this 

means epsilon 2 so that is epsilon 1 and epsilon 2 you are writing here. So what happens after 

that if you just compare this 2 equations you can try to find out only this one I think this one 

actually sufficient. 

 

You know n square - k square epsilon 2 = 2n k you can try to find out what is the value of n. 

So n can be written simply just a little bit of algebraic step you can find out n 1 n is equal to 

this one in terms of epsilon 1 epsilon 2 if you know the imaginary part and the real part of 

your dielectric constant then you can find what is the real part of your complex refractive 

index and what is the once you know that you can find out kappa = epsilon 2 / 2n. 

 

So that is 2 n whatever the n value is there you put down here then both n and k kappa they 

are actually can be derived once you know epsilon 1 and epsilon 2 the refractive index can be 

found out this standard equation you should keep in just from here you can just simple few 

steps and you can get that one. Now recall these plane wave propagating along z direction, I 

am just trying to explain that base law already we have you remember that we have just 

discussed we have discussed I z = i not e to the power - alpha z that is the Beers law. 

 

I would try to see how it is it can be expressed by considering sigma and this complex 

refractive index. So, this a plane wave and this k instead of normally 2 pi / lambda I have to 

write in tilde, because you have a complex refractive index plane wave when it is propagating 

inside the material metal or semiconductor I have to write 2 pi / lambda in tilde. So now if I 

just simply write there. 

 



This can be modified as a x a x E not E not j omega t beta z where and it would be - alpha z 

where beta = 2 pi / lambda n this n and alpha because it is an imaginary part multiplied by j 

you can have 2 pi / lambda kappa you know beta equal to basically 2 pi / lambda n tilde 2 pi / 

lambda n we are considering beta here and alpha we are writing here, then I can just simply 

step forward we can get what is not so, difficult no rocket science here just a step forward. 

 

Now we have also discussed the average energy flow pointing theorem pointing vector E 

cross H and we know that the electrical and magnetic field can be orthogonal to each other if 

we just consider that thing then we do know that energy flow is this one E cross H then it will 

be that I borrowed the equation from earlier discussion 1 / 2 eta in r squared e to the - 2 alpha 

z and then what we get. 

 

You see this one this one we can consider as I not and 2 alpha you can consider as alpha not 

and then we can consider intensity as it propagates the power or intensity, intensity is the 

power flow per unit area that is it intensity we just consider I z I not e to the - alpha not z that 

is actually your so called Beers law where this alpha not is the attenuation coefficient 

attenuation constant for the intensity of power and normal this alpha is the amplitude 

attenuation coefficient. 

 

So 4 pi / lambda kappa this 4 / lambda sometimes you can consider 2 pi / lambda 2 times 

kappa. So you can write 2 2 pi / lambda c you can consider c you can consider 2 pi c / lambda 

= omega, omega / c into kappa. So sometimes it can be alpha not can be written at 2 times 

omega / c kappa and alpha will be so called omega / c kappa. So intensity and amplitude they 

are just 2 times fine. So one thing is this should be n square I think this here you should see 

that n square expression should be corrected and n square and kappa will be this one. 
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Now regimes of transverse and longitudinal waves so transverse and longitudinal waves you 

know epsilon r I have written like complex real part imaginary part conductivity, you can also 

consider any one of them you can use that is fine and then next consider the wave equation 

you take wave equation this one karl both side then you can write mu 0 del del t karl h now, 

you know plane wave case null operator that is a del operator it is nothing but - j k. 

 

So you are just considering e 0 e to the power j omega t - k dot r k dot or if you are 

considering the plane wave then null operator will be equal to - j k and del del t = j omega in 

this case particular case if you just consider that then what you get, you get like this and then 

this one will be better identity and the right side instead of karl of h you can say this one and 

sigma instead of sigma will be just writing epsilon r that is why I am just writing this thing 

one of them I am writing. 

 

Because I do not need to write sigma additionally and then substituting this to this, this one 

will be k - j k you have to write - j k you have to write and k square. So if you just substitute 

there of this operator then you get left hand side this one and right hand side you will be 

getting this one you are taking mu 0 epsilon 0 = 1 over c square and del del t del 2 del t 2 will 

be there this will be actually mu 0 epsilon 0 epsilon r del 2 E / del t 2 and del 2 del t this will 

be equal to - omega square. 

 

So if you just substitute there then you get this equation. So next thing what you get the wave 

equation transverse wave electromagnetic wave propagation if you just considering 

transverse wave that means, you know k and E propagation direction wave vector is 



perpendicular to the E that means this will become 0. So in that case if this is become 0 that k 

square is equal to this k square is equal to omega square / c square epsilon r here it will be 

epsilon r. 

 

Now longitudinal waves; what is that longitudinal waves? So we know electromagnetic 

waves so called transverse wave but this is a special case when you can get a solution also. 

For example you consider the propagation vector and electric field H is parallel this type of 

solution can be considered also that type of situation mathematically you can consider this 

one can be suppose k is parallel to E in some situation. 

 

What happens if this is the delay this one will become k square because that will not be 0 no 

more 0. So that means k square E - k square E that is the left hand side. So this one and this 

one if you subtract that will be 0. So 0 left hand side and right hand side will be epsilon r so 

looks like a little bit odd that 0 and epsilon r so that means you can have epsilon r must be 

equal to 0. 

 

So in case of you are considering longitudinal waves that means your electric field is 

oscillating also in the propagation direction that time also you can think of certain solutions 

which are called which has to be this dielectric constant has to be 0 if you get a dielectric 

functions such that in certain points certain omega point k points the value is 0 that means 

that particular point will result into a longitudinal wave. 

 

So that is why we conclude that this is signifying that longitudinal collective oscillations can 

only occur at frequencies corresponding to 0 of epsilon omega interesting this collective 

oscillations occurs that means we are talking about conductivity electrons in most everything 

is there. So, I have if I have electromagnetic waves and that electromagnetic wave have had 

some frequency point where you get certain dielectric function and certain omega you are 

getting 0. 

 

For that particular frequency what will happen you can see longitudinal wave normally 

collectively entire electron cloud you can assume that will be propagating and that is how we 

actually a new type of subjects topics came out that is also sometimes used in integrated 

photonics that is called plastimonics basically we will discuss that if time permits. So this is 



all what we could discuss about the electromagnetic wave propagation inside metal or 

semiconductor. 

 

And then what will be the transverse electromagnetic wave and what would be the dispersion 

equation this will be called as your dispersion equation because you know k wave vector how 

it is related but there is a chance that if it is metal and semiconductor longitudinal waves also 

can exist if the dielectric function had some solutions 0 at some frequencies. 

 


