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Hello everyone, in this lecture today we are going to discuss distributed Bragg grating reflector, 

distributed Bragg reflector especially the design aspects I will be discussing today. So, first I will 

consider using distributed Bragg reflector one can demonstrate various kinds of devices including 

laser, active devices, adddrop multiplexers but one of the important aspect is that it is just a 

reflector a band of wavelength around Bragg wavelength can be reflected that means that band 

will be stopped in transmission.  

 

So that is why it is called bandstop filter. So, I will be discussing bandstop filter how one can 

design using a single mode waveguide structure. Similarly, I will be discussing the aspects of 

bandstop filter with a multimode waveguide structure.  
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So now, let us again recap the DBR structure it is basically top view of representative silicon on 

insulator waveguide structure. So, this is your waveguide you can consider this is your single 

mode waveguide, this is also single mode waveguide output and input also single mode 

waveguide but in between from z = 0. So, from here to here z = L this is z direction, there is a 

periodic perturbation.  

 



This periodic perturbation you can see that rectangular perturbation structures are there in both 

sides in the sidewall it is just defined in the sidewall and in this type of structure you know that 

the forward propagating wave will have electric field associated to forward propagating mode is 

this one and we can define also backward propagating wave because of the distributed reflections 

you can generate backward propagating wave.  

 

If you are considering only launching from this side also only and this E f and E b backward 

propagating wave you have discussed earlier that how that can be expressed this A 1 z and A 2 z 

that is the variation evolution of forward propagating wave and backward propagating wave 

respectively along as a function of z propagation direction. And you know this delta beta that 

means a phase mismatch factor delta beta that is defined by 2 omega / c omega is the operating 

frequency.  

 

Omega as we know that is defined by 2 pi c / lambda and n effective omega that time n effective 

lambda you can express. So, as a whole you can express delta beta that means propagates 

difference in propagation constant that phase mismatch factor is can be expressed in terms of 

lambda and this lambda capital lambda is the period of the grating structure from here to here this 

is the lambda period. So, all these we have discussed in earlier classes.  
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Now, as you know if we just consider boundary values something like that A 1 z = 0 A 1 0 that 

means I am launching here in forward direction with a amplitude A 1 0 that means here a fixed 

value you are launching at z = 0 if you put. And then the reflection coefficient that is r is 



represented as amplitude reflection coefficient that also we have derived using coupled mode 

theory amplitude reflection coefficient.  

 

So, this is the amplitude reflection coefficient or that can be defined as whatever backward 

direction amplitude is there that is actually we call A 2 0 divided by whatever I launched here. So 

that is your reflection coefficient for the entire DBR structure and that is defined by this one here 

when delta beta if it is 0 that means this one this second term in the denominator will not be there 

and then in that case, we know the reflection coefficient is a tan hyperbolic so on delta beta = 0.  

 

And reflectivity that means intensity power reflection coefficient, so called reflectivity, this will 

be called as the reflectivity just you take it this is a complex you take complex conjugate multiply 

then you get reflectivity and where s is defined as kappa square - delta beta / 2 whole square 

kappa how can be estimated we have also discussed in the previous class.  
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Now, if you see just analyse this R that means, you are just taking complex conjugate of this one 

this R means r r star that is actually reflectivity and you are getting this equation. And you know 

if you just put delta beta = 0 delta beta = 0 s will become kappa and then delta beta a second term 

will go and then reflectivity normally at delta beta = 0 that will be maximum that is why we write 

R max tan hyperbolic kappa L that also you have discussed in the previous lectures.  

 

Now, you see in this function we do have 2 different type of functions sin hyperbolic something x 

and cos hyperbolic x, x means here s times L, L is the length of the DBR structure and if I want to 

analyse how these R varies with a delta beta or any other parameter like kappa etcetera or length 



we need to know how the sin hyperbolic function, cos hyperbolic function looks like you know if 

you just plot sin hyperbolic, cos hyperbolic function this is a blue curve this is cosine hyperbolic.  

 

So, this is minimum cosine hyperbolic x = 1 when x = 0 so that will be minimum, but in case of 

sin so you have to follow this red one. So, red one if you see that at x = 0 sin hyperbolic x = 0 and 

then as you go as you increase your x value both sides then it is just increasing to infinity at just a 

little bit slightly above x = 1 it is going very large and at certain value you will see it is almost 

merging to the value of cosine hyperbolic x.  

 

So now, since it is tan hyperbolic function also we have represented tan hyperbolic function is 

nothing but it is a simple trigonometric formula we know that tan hyperbolic x = sin hyperbolic x 

divided by cos hyperbolic x. So that means, if you divide these 2 you get this green curve that is 

actually for tan hyperbolic x. So, if x means if sL, s means this one kappa or delta beta defined by 

these if they are detuned. Then we can we know how the sine hyperbolic function and cos 

hyperbolic function varies with that parameter and we will be eventually getting the results for 

power reflectivity of the DBR structure.  
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So now, we look a certain issue R maximum can be tan hyperbolic square kappa L, so tan 

function is this one this is tan hyperbolic function x. So that means, this kappa L tends to infinity 

that means, it becomes tan hyperbolic square becomes R max become 1 that is known. So, 

maximum value of reflectivity can be one that is pursued, reflectivity it is a fraction of power 

reflected from the DBR structure with respect to the input power so that can be maximum 1.  

 



So, as you reduce the kappa L means, this is x this x is reduced, then your reflectivity will be 

reducing and when x = 0 your reflectivity will be 0. So, when x = 0 means this kappa L value but 

delta beta = 0 that is possible either kappa = 0 or L = 0. In that case your reflectivity will be 0 that 

is like a homogeneous waveguide no perturbation nothing is there. Now, I will looking for some 

other issue, let us consider what could be the minimum value R must be 0 that is what it says.  

 

So, in that case suppose L not equal to 0 and kappa not equal to 0, L has a DBR structure as a 

finite length and kappa also has a finite value. So, I will investigate whether R can be 0 for any 

delta beta value, delta beta can be expressed like this or for any other delta beta means omega or n 

effective or whatever is there any possibilities there I have learned that delta beta = 0, reflectivity 

become maximum. 

 

But then if it is maximum there can be some other point delta beta not equal to 0 obviously, that is 

should be delta beta not equal to 0, there may be a chance that reflectivity can be 0 ultimately you 

see the reflectivity sin hyperbolic, cosine function is there. So, I would like to know the nature of 

the reflectivity when delta beta not equal to 0. You see R = 0 if you just try to see just looking into 

the expression it is easy to say that if sine hyperbolic sL = 0 if this one equal to 0 then R will 

become 0.  

 

But not always it can happen that if this is equal to 0 and these value denominator parts should 

have some finite value, if denominator itself becomes 0, then 0 / 0 it is in determinant. So, we 

should be careful for choosing R = 0, so for R = 0 we have this is 0 and this value sin hyperbolic 

also will be 0, I am just considering that R = 0 if this one 0 means this one 0, but at the same time 

this should not be equal to 0 that is what it is mentioned here.  
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So, looking into that we can say that sin hyperbolic sL = 0 let us consider numerator then I know 

sin hyperbolic x = e to the power x - e to the power -x / 2 that means, sin hyperbolic 0 means e to 

the power sL - e to the power -sL / 2 = 0, this is a little bit simplify then what you get e to the 

power sL - e to the power -sL that is actually equal to 0, e to the power sL = e to the power -sL 

that means, e to the power 2sL that is equal to 1 that is what is written here. And one can be 

written as e to the power j2p pi that is what it is written.  

 

So, this p you could consider this is true per p = 0, 1, 2, 3 integer values, but this 0 value I will not 

consider why is that, so this turned into the picture that sL = jp pi from this equation if I compare 

this to these if I put p = 0 L not equal to 0, if I put p = 0, s = 0. So, if s = 0 this part will become 0 

S cos hyperbolic sL = 0. So, while choosing p = 0 and for sin hyperbolic sL to make 0 if you 

choose p = 0 then simultaneously this value will become also 0.  

 

So that means 0 / 0 will come that is that region p = 0 value should be omitted because that value 

is coming indeterminant. So that we have written p should vary from 1, 2, 3 and so on. So, for p if 

you just follow this equation and with that equation p must not be equal to 0 and p should be 

starting from 1, 2, 3 then whatever value you get for that sL value you get that will result into 

reflectivity equal to 0.  
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Now you try to see that this one this equation with square because it is j imaginary term is there. 

So, if you just square it then you get j square, j square = -1. So, minus 1 p square pi / l, l I have 

taken this site. So, from this equation I get this one and again you know s square we have defined 

like this while developing coupled mode theory. So, if we just put instead of as I just put kappa 

square - delta beta / 2 then it will be p square pi over l square that is true.  

 

We get delta beta we have just writing for p, p is the integer value we are considering plus minus 

this one kappa square + p square pi square so I can find out for these delta beta value if it is 

satisfying either plus or minus of this one when p is running over 1, 2, 3. So, discrete values of 

delta beta solution will be getting where R can be equal to 0 reflectivity can be 0. So that means, I 

said that delta beta = 0 your reflectivity can be maximum.  

 

But as you keep on increasing delta beta value both plus direction and minus direction delta beta 

can be plus and minus depending on this expression if this one is larger than 2 pi / lambda then it 

is a plus if it is less than 2 pi / lambda capital lambda then it will be negative. So, both direction it 

can have solutions like these and periodically you can see R equal to minimum. So, you can see 

that in principle I will show that that the reflectivity normally if you just put delta beta when delta 

beta = 0 reflectivity can be maximum.  

 

And then it can come 0 and then again another 0 will come that means in between there will be 

maximum. So, slowly reducing this type of characteristics you will be getting that oscillations 

will be there is a main band and then both side you can have periodic maximum minimum and 

that maximum will be slowly in the reducing order if you just plot this one as a function of delta 



beta you will be getting this type of characteristics and so that. So, delta beta not equal to 0 

reflectivity can become 0 for other values periodically and that depends on using this equation.  
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So, to find central stopband delta omega sb stopband is sb stands for omega we should substitute 

p = 1 because p = 1 you will get delta beta because delta beta can be expressed in terms of omega 

and if I want to find out stopband then I must find that there will central maximum and then 

positive side minimum and negative side minimum then oscillations will be there, so this is your 

delta beta running this is your 0.  

 

So, these value, these minimum comes because a p = 1 and then next minimum come because of 

the p = 2 and so on. So, backside reverse direction also p = 1, 1 maximum minimum and then 

again p = 2 and other minimum something like that, but this delta beta = 0 reflectivity can be 

maximum. So, our interest is that this is the main stopband that is the main reflected spectrum.  

 

So, if I want to know the stopband then I need to know the value of delta beta here at 

corresponding omega value, delta beta value and corresponding omega value I will find and here 

also I will be getting the delta beta value and corresponding omega value, then 2 omega you can 

consider omega 1 this is supposed to come omega 1 and this is omega 2o, s omega 1 - omega 2 is 

that central stopband that is what to find the central stopband we have to put p = 1 then you get 

delta beta 2 values plus minus kappa square p = 1 you put pi L.  

 

So, these 2 value it just mention that this inside square root whatever the value is coming that can 

be kappa naught. So, kappa is a coupling coefficient we know that, but you have to add pi / L 



square obviously if L is very large this value can be ignored, the second term can be ignored in 

that case it will be just simply to kappa plus minus 2 kappa. Otherwise, if L is comparable to pi 

you are something like that comparable to kappa so with this second term if it is compared to 

kappa square then I think you cannot ignore that.  
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So, in that case what do we get delta beta plus I am writing I know delta beta expression and delta 

beta plus I am writing for a given omega 1 frequency here 2 omega over c n effective we write n 

effective again n effective so must be at omega 1 - 2 / lambda that will be happening because of 

the delta beta value of 2 kappa naught and another delta beta minus where R = 1 comes 

corresponding frequency must be omega 2.  

 

So, we know this expression omega 2 I am writing 2 pi / lambda, lambda is fixed and that is 

happening because of the - 2 kappa naught. So, I have at this point plus 2 kappa naught 2 kappa 

naught means this one you can have reflectivity 0 and - 2 kappa naught delta beta = - 2 kappa 

naught. So, delta beta as you know it can be plus and minus and these 2 value you can get first 

minimum within that minimum what is the frequency range I know the omega 1 here and I know 

the omega 2 here.  

 

I will concentrate this expression kappa not known just subtracting these 2 I will be getting the 

stopband that is what we do? Subtract this one and this one. So, if you subtract what do you 

suppose to get omega / c n effective normally it is 2 times the beta 1 omega and we just this one 

in principle omega / c n effective that is beta we have written beta omega 1 - 2 beta 2. So, it is 

easy to write down earlier we have defined again and again beta = omega / c n effective.  



 

So, what I write here this is beta omega 1 whatever the value beta coming at 2 times omega 1 beta 

omega 1 and 2 times beta omega 2 that is subtracting and this one when you subtract 2 pi / 

lambda here it will be plus that will be removed cancelled and then 2 kappa naught - - 2 kappa 

naught that will give you 4 kappa naught. So, from here we get beta omega 1 - beta omega 2 that 

is giving you just 2 kappa it is 2 kappa naught. These one I write as a delta beta stopband that is 

what we have written delta beta stopband = 2 kappa naught that is what the expression I have 

written here.  
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So, now again this is the expression we should keep in mind I will follow this one again we know 

another expression d omega, omega beta relationship is there for any given waveguide structure 

we have omega beta curve how to generate we know that at a given frequency I can find out what 

is the slope they are how it is varying d omega / d beta that is actually nothing but c / n g called 

group velocity. So, from here if I just simply do a little bit delta omega sb then delta beta goes this 

side.  

 

So, in this way I can write a differentially I can write a delta beta is detuned how much delta 

omega will be detuned, this is a simple omega beta relationship gives if I know n g group index of 

the waveguide then if I determine my frequency a bit how much delta beta will be changed I 

know that if we know the n g or group velocity c / n g, from this expression I can write down that 

this delta beta can be replaced with this expression because delta beta term is related to delta 

omega.  

 



So, we write delta omega = delta omega delta beta instead of delta beta I will be writing here delta 

omega stopband = c / n g times delta beta naught. So, delta beta sb, so delta sb is nothing but 2 

kappa naught. So, I write c / 2 n g 2 is there and kappa naught expression is this one. So, 2 kappa 

naught c / n g, c / n g 2 kappa naught delta beta 2 expression I have written here. So, I know what 

to do if I know the group index, if I know the kappa, if I know the length then I will be able to 

actually calculate what is the central stopband of a DBR structure.  

 

So, n g kappa L these are the design parameters for the DBR structure. So, if you can design 

properly if you want to get a certain stopband certain bandwidth you do not want to pass through 

the waveguide DBR structure. So, you can actually and design a waveguide such that certain n g 

you can get and kappa, mainly n g for a given waveguide structure single mode waveguide 

structure n g does not change much.  

 

So, only you can control kappa how kappa can be controlled, how much perturbation you are 

doing in the waveguide structured more the perturbation more the kappa value. So, depending on 

that I can calculate stopband centering around Bragg wavelength of Bragg frequency we can just 

convert it into omega lambda relationship we know this omega = 2 pi c / lambda. So, you can 

write delta omega = 2 pi c lambda square delta lambda minus sign will be there.  

 

So, this delta omega if you just convert into lambda then we can find out stopband in terms of 

lambda, lambda B square Bragg wavelength pi n g and this one so you can control your stop 

bandwidth, how much bandwidth you want to reflect you do not want to transmit them through 

the waveguide such a particular band, it can be a channel particular channel information channel 

you want to stop carrier frequency carrier wave length you known then you can actually design 

your DBR structure.  
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So, let us go for certain example as a mentioned I repeated this amplitude reflection coefficient s 

square defined and power reflectivity and then stop bandwidth and then you have a stop 

bandwidth in terms of angular frequency stop bandwidth in terms of wavelength I know and 

lambda obviously, you know how to calculate lambda B that is for delta beta = 0 lambda beta = 2 

n effective period. So, you can control the period you can find the wave but if you know n 

effective index of the waveguide guided mode.  

 

And if you design a certain period depending on that certain wavelength would be a Bragg 

wavelength around that point actually delta beta will be equal to 0. Now, let us consider as it is 

shown top view here if you go to cross section then you can say that while you can have this is 

your total waveguide width and periodically part of this region this re-waveguide structure slab 

region this thickness is called h slab and this thickness is called H device layer thickness and this 

one will be calling as a waveguide width.  

 

And then you are getting a perturbation from x 1 to x 2 lateral direction and obviously, y 1 this is 

x y coordinate. So, this is the x coordinate and y 1 x coordinate and y 1 this is x 2, y 2, y 1 and so 

on coordinate system is there this is the region it is part of it periodically. Periodically it is 

removed the silicon this is device layer if it is silicon on insulator this is silicon and this is your 

box layer buried oxide layer.  

 

So, using this structure you will know how to calculate kappa value earlier we have expressed 

using your so called rectangular periodic perturbation and for that purpose if we calculate kappa 

using coupled mode theory you know that if it is a single mode waveguide only one mode will be 



launched from this side and same mode will be reflected backward direction. So, in that case 

kappa will be n d square – n c square / n effective 2 times overlap integral in this region you have 

to see how much field strength suppose you have field like this defined like these.  

 

So, these fields strength covering in the part of region that is actually comes in your kappa 

calculation and you need to integrate only x 1 to x 2 y 1 to y 2 in the xy plane because beyond that 

no perturbation is there. So, normally to calculate kappa you need to know field strength for the 2 

coupled modes and as well as you are the region you are getting perturbation, 2 times is there 

because you can have 2 sides.  

 

If I can calculate one side that means x 1 to x 2 y 1 to y 2 that means you are calculating kappa 

per one side and similar kappa you will be getting in the other side that side 2 times comes. If it is 

only one side perturbation the side is completely field then you can have this then you do not need 

to write this term just one side. Using this kappa value using this delta beta expression and using 

also that expression s square = kappa square - delta beta / 2 whole square.  

 

And delta beta is expressed like in terms of omega; omega can be expressed in terms of lambda. 

So, as your function of wavelength if I define a period up to 92 nanometre for L = 200 

micrometre device length and delta w delta w means this perturbation suppose this is the 

perturbation so called x 2 - x 1 can be called as a delta w. So, one side perturbation delta w is 50 

nanometre other side another 50 nanometre, then we can use this kappa calculation I get kappa 

calculation about 0.023per micrometre.  

 

Obviously, this one will be per micrometre lambda is here, per micrometre expression is 

dimension. So, consider lambda = 292 nanometre and corresponding n effectively if you calculate 

for these waveguide dimension certain waveguide dimension you consider then what you get 

typical value the Bragg wavelength you are getting exactly at 1550 nanometre for a given design.  

 

And then what you see as you detune delta beta meaning you are detuning omega or lambda here 

it is lambda is 1, then you will see the centralize maximize there that is actually equal to 1 for 

delta beta = 0 it is 1, you are simulating this is a plot using MATLAB code. So, you can do also 

you can try how it is actually happening. So, you can find that you see after certain from 1550 that 

is we are actually phase matching condition satisfied where delta beta = 0 that is why you are 

getting maximum.  



 

Now, other than delta beta = 0 there are other values you are getting where the minimum occurs 

according to our previous discussion minimum means R = 0 occurs. So, our interest is that first 0 

that side and this side so this is as a function of lambda you are calculating whatever lambda you 

are getting here, whatever lambda you are getting here you have to subtract to get delta lambda sb 

that is the stopband.  

 

So, I can have very narrow stopband depending on the design parameters like kappa or delta w of 

course, length is also involved how narrow how broad or you want to get so longer the length you 

can get a narrow r the reflection bandwidth because l is in that denominator here. And when you 

see that kappa is small, small kappa means delta lambda sb will be smaller. So, you can get a 

narrow channel narrow stopband. 

 

Some application you need broad stopband and some application you need maybe very narrow 

linewidth channel you do not want to allow you want to get reflected. So that can be actually 

designed that you can find out just you have to design your waveguide calculate n effective, 

calculate n g and then calculate the part just decide what type of perturbation is required for 

having a Bragg wavelength at lambda B.  

 

Once you know n effective and period you can give it a lambda B and decide lambda B you can 

calculate and accordingly the period you can set, once it is set then you can actually find as a 

function of length or kappa how the bandwidth is related. Suppose, you need a very narrow 

bandwidth then kappa has to be reduced to a smaller value. So that accordingly delta w can 

control this delta value how much perturbation you can control you can get a narrow r. If you 

want more broader and broader you will increase the kappa value that means you are increasing 

the perturbation then you can get a broader stopband.  
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Now, you see such a device actually we have developed we have understood the coupled mode 

theory now, that this is possible. Now, I have shown that some device we fabricated in our lab in 

IIT Madras. I see this is the how waveguide a scanning electron microscopic image it is shown 

here. And the DBR Design you define in a periodic perturbation and fabricate then finally we end 

up with this type of structure both side details perturbation is there.  

 

So, input side will be input waveguide single mode waveguide output side will be a single mode 

waveguide in between this is the DBR structure some section of the DBR structure is shown. And 

this will be your so called period and that will be your from here to here that can be your 

perturbation depending on the perturbation or it can be considered x 1 and this can be considered 

x 2.  

 

If this is your x axis and this is the z axis vertical direction is the y axis and y 1 y 2 you can 

consider and you can calculate kappa value and you can have a DBR structure not necessarily that 

you need to have both side grating you can have one side also it for example, it is shown here that 

this region if you are just taking the scanning here as a mention this point to this point the width is 

384 nanometre and this one around 150 or 200 nanometre.  

 

So that way you can also design a DBR structure, it can be one side it can be both side another 

one sided we are actually the if you see this one here if you see this is totally 576 same structure, 

same device actually you are scanning here to see the width. So here 384, there 576, so delta w 

that means width perturbation is 576.1 - 384.1 nanometre. So, this is about then 192 about 200 

nanometre around 200 nanometre perturbation is there.  



 

So, such a device we have fabricated and we have actually got the transmission characteristics 

you are launching suppose this is your DBR structure and then grating coupler grating coupler 

here you will launch here and you will launch a routine the wavelength then you see certain 

wavelength in transmission is missing that means that part that lost energy in the transmission that 

must be reflected backward direction.  
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So, what do you see in the transmission you see put a DB extinction you get a bandwidth of 11 

nanometre for a grating length of 450 micrometre. Delta w is given here 190 nanometre 575 

nanometre all the other parameters given and you see almost nearly 1550 nanometre you get a 

stopband and bandwidth 11 nanometre and extinction that means this much 40 DB down suppose 

you have a laser line here whatever value you get the intensity and here laser line it is there it will 

be 40 DB down.  

 

So, such high extinction filters add some applications especially in quantum photonic application 

and micro photonic applications we will discuss later. So, using the experimental results you can 

find out what is the transmission coefficient it is actually 10 to the power - 4 only transmission 

coefficient reflectivity is 99.99% R = 0.9999 delta lambda so on. So, from this experimental data 

we can extract lambda B = 2 times n effective this one. And also you know from the delta lambda 

sb stopband expression this one you have n g is there.  

 

So, you know lambda B you know kappa you know L so you can find out n g extracted n g we 

can get something like that group index. So, from the experimental results you can find out what 



are the design parameters whether that is matching with the calculations or not you can compare. 

So, in our design in this type of design and fabrication experimental results matches very well 

with the coupled mode theory results.  

 

So, this is a good ploy to design a stopband filter using single mode waveguide periodically part 

of single mode waveguide or so called DBR structure distributed Bragg reflector integrated in a 

single mode waveguide structure.  
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Now, let us move on to how if suppose your device is multimodal, what happens if you are still 

doing a DBR structure whether you will be getting stopband filter or some completely different 

type of filter characteristics you will be getting. So, we have shown that if you fabricate a DBR 

structure in a multimode waveguide at least it can support 2 modes for example, earlier we are 

considering only single mode waveguide, it is 2 mode you get a very interesting results and that 

can be useful for many applications also.  

 

I will show you some results let us consider this is the top view schematically it shown top view 

of the waveguide structure designed in silicon on insulator platform just top view showing. 

Initially input side it is a single mode waveguide, this output side and that single mode waveguide 

it is shown the propagation constant is beta naught prime both are same it only supports 

fundamental mode assume and in between you increase the width a little bit adiabatically.  

 

So that any fundamental mode like this if you are launching that will be slowly adiabatically it 

will be expanded. So that even though it is a multi mode waveguide structure higher order mode 



will not be excited assume at the beginning, but what happens as it propagates through the DBR 

structure. Since it can support both the mode fundamental mode as well as first order mode.  

 

There is a chance that forward propagating fundamental mode can couple light into the backward 

direction to the fundamental mode and backward direction first order mode because it can 

support, so it can this fundamental mode whatever frequency wavelength you were launching 

here, that frequency wavelength can be phase match to the backward propagating fundamental 

mode and backward propagating first order mode.  

 

So, once it is phase matched and if you find their overlap or coupling strength is non zero, so you 

can see that you can get one reflection band due to the coupling between forward propagating 

mode to backward propagating mode and another band you will be getting because of the 

coupling between forward propagating fundamental mode to with backward propagating 

fundamental first order mode.  

 

So, you can expect it to stopband, so same device earlier if it is a single mode waveguide structure 

and DBR structure is there you could get only one stopband, but if it is a multimode waveguide 

then you can get it 2 stopband distinctly because they are phase matched at different wavelengths 

or different frequencies this is some 3D view here it is shown input waveguide single mode, 

output waveguide single mode taper such that anything launched here that is a single mode.  

 

And as it is entered into the DBR structure, it will remain fundamental in the forward direction 

but because of the phase matching condition light can coupled to the backward propagating 

fundamental mode and backward propagating first order mode. So, to understand that, it is soon 

that for example, you have 2 modes in the forward direction in the grating structure you have the 

fundamental mode is having because you width is large.  

 

So, this propagation constant, this propagation constant will not same you know beta actually 2 pi 

/ lambda n effective. So, width is different means n effective is different so for a given 

wavelength beta will be different here, but the fundamental mode beta will be different here that 

is why here we are considering beta naught prime and here we are considering beta naught and 

first order mode we are considering beta 1.  

 



So, I can get a phase matching condition delta beta = 0 that means forward propagating 

fundamental mode beta naught - - beta naught backward propagating fundamental mode that is 

why minus 2 pi / lambda that gives rise to if you use this expression, I can find a Bragg 

wavelength that lambda B 00 satisfying this one period is known as n effective 0 effective index 

of the fundamental mode node.  

 

So, you can get a Bragg wavelength here around Bragg wavelength you can get a stopband and 

another phase matching condition you can consider delta beta 01 that means forward propagating 

fundamental mode and backward propagating first order mode minus beta that is the delta beta 

expression 2 pi / lambda that must be equal to 0 then you will also get beta naught expression beta 

1 expression if you are just using wavelength in terms of wavelength then you get lambda B 01.  

 

At another wavelength where n effective 0 fundamental mode and n effective 1 first order mode 

because here you see you are putting 2 pi / lambda n effective naught and here you will be putting 

2 pi / lambda n effective 1. So, if you just simplify that one then you get this is the Bragg 

wavelength for forward propagating fundamental mode coupling to the background propagating 

first order mode.  

 

Now, question is that when something backward propagating mode the beauty here earlier what 

we have discussed in this case this much is lost in transmission, but where that should appear that 

should appear in the reflection. But in this case, here also fundamental mode when reflected 

coupled backward direction these waveguide can support fundamental mode. So that will appear 

that means lambda B 001 Bragg wavelength which is reflected here that will appear in the 

reflection.  

 

Because it can support and guide back to the backward direction towards the source you can 

separate them in that case, but, if it is coupled to the fundamental first order mode, when the first 

order mode propagating in the backward direction when it enters into the single mode, you get it 

cannot support. So, what will happen? This will be coupling to the slab. So that means, if 

anything coupled to the backward propagating if forward propagating fundamental mode is 

coupled to the backward propagating first order mode.  

 

That backward propagating signal or energy that will not be collected by the single mode 

waveguide because it is shape is like this. So that will be lost here so that will be missing in the 



transmission you can get to stopband one around lambda B 00 another is lambda B 01, but in the 

reflection you will get only pick around lambda B 00 because that can be collected. So that is 

interesting if you are using certain this wavelength, this will be missing in the forward direction.  

 

But, it will be also missing in the backward direction because of the waveguide filtering here, 

because this side when it is coming backward direction the single mode waveguide cannot 

support the first order mode. So that types of application we can also think of here it is shown that 

for a given waveguide suppose your waveguide width is 760 nanometre and device layer 

thickness is 250 nanometre, slab height is 150 nanometre here this is slab height, this is your 

width this is your h.  

 

Then we can find the first 2 modes when you solve numerically using numerical or anything else 

any numerical software you use simulator if you use, then you get into fundamental mode 2 

modes lower order mode that is supported guided one is fundamental mode another is first order 

mode, both the modes are TE like mode that means, electric field along y direction is dominating, 

for that guided mode.  

 

So, E naught x y means you are meaning y component this is y component will be dominating 

that means electric field will be oscillating along y direction most, fundamental mode you see in 

the center it will be maximum and slowly decreasing and there will be some kind of discontinuity 

just to satisfy the monetary condition and first order mode if you see, you see this is a blue colour 

and this red colour that signifies that you are getting something like this.  

 

So, this is a positive and this is a negative and here it will be positive it is shown here, but it will 

be oscillating as a function of e to the j omega t as a function of time it will become positive 

negative positive sinusoidal it will vary. So, but here at any instant of time if you see one side is 

positive and other side will be negative field strength and the entire thing it is like a standing 

wave structure around lateral direction. And that will be oscillating as a function of time also.  

 

So, I do not I think all of you can understand by the time whatever we have expressed explained 

so far in this course. And the coupling constant that means forward propagating fundamental 

mode to backward propagating fundamental mode coupling, we defined as kappa 00 fundamental 

mode is indicating 0 here. So, it is standard whatever we discussed earlier coupling coefficient 

how to calculate we know.  



 

If we know the fundamental mode in the grating region E naught x y whatever you are getting 

that one who square and then integrate one sided x 1 to x 2. So, if you are just suppose this region 

is what are theoretically that is what it is mentioned and you get kappa 00 and if you want to get 

to kappa 01 meaning forward propagating fundamental mode and backward propagating first 

order mode how they are coupling.  

 

So, in this case instead of n effective 0 here must be it is 0 you get n effective 0, n effective 1 

square root mean value. So, this geometric mean if you use that from the couple mode theory 

comes, I think once we have discussed that and then we can have a overlap between E naught to E 

1 star first order fundamental mode. So, just one thing you should keep in mind that if the same 

waveguide if grating perturbation is both side is there then this kappa 01 would be 0.  

 

Because you have one side positive and other side negative here suppose this side is positive 

perturbation and this side is positive if you integrate you get a positive value, but if you multiply 

this one and this side multiply you will be getting negative. So, one side one half integration gives 

you positive overlap another side it will give you negative overlap if you calculate this one as a 

result the kappa you will be getting 0.  

 

So, even if it is a multimode structure to it can support 2 modes but if grating is symmetric, both 

sidewall perturbation is there in that case, you will you may get plasmatic condition with the back 

or propagating fundamental first order mode for a certain wavelength, but kappa will be 0 that 

means coupling between forward propagating mode to backward propagating first order mode 

forward propagating fundamental mode to back or propagating first order mode is 0.  

 

So that is the reason if you want to get an active stopband effective stopband because of the 

coupling between forward propagating fundamental mode with backward propagating first order 

mode in that case that grating you must fabricate define in one of the sidewall. So that is very 

important for silicon photonics especially any re waveguide structure that is true obviously, it is 

widely used in silicon photonics because the sidewall grating definition is very using lithographic 

technique, standard CMOS compatible lithographic techniques.  
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Now, how to design that I want the Bragg wavelength lambda B 00 at a certain wavelength 

lambda B 01 at a certain wavelength, you remember that if you try to find out which one will be 

higher lambda B 00 lambda B 01 definitely n effective 0 greater than n effective 1 we know that. 

So that means lambda B 00 is greater than lambda B 01, if you subtract that what you get? You 

get n effective 0 - n effective 1 times lambda.  

 

So, if you see different between the effective indices of the fundamental mode as well as first 

order mode that actually defined how much separation will be this stopband. So, we need to 

calculate we can design with this difference can be controlled by controlling the design 

parameters the waveguide structure. So, we have calculated as a function of waveguide width for 

a given H = 250 nanometre device layer.  

 

And here we have calculated for 3 slab height effective index calculated this is for fundamental 

mode as a function of width effective index how it is increasing for h = 150 nanometre it is soon 

10 nanometre below and 10 nanometre this is 10 nanometre below and this is 10 nanometre 3 

different structures 3 different design of the slab height you can see that for a wider width even 

this is insensitive to the slab height all 140 nanometre 150 nanometre 160 nanometre slab height 

for a wider width that is almost closer to the bulk.  

 

So that is the reason this 10 nanometre variations of the slab height you will not see n effective 

index changes of the fundamental mode and then as you know up to this much width you would 

not see any second mode is supported if you just increase the width then you get another mode 



appearing, obviously again for 3 different slab height, we can see the refractive index for the first 

order mode. And if you go up to 1.1 micrometre for H = 250 nanometre.  

 

And h equal to in this range the waveguide will support only 2 modes and this both 2 modes are 

TE like mode as I mentioned for this slab height. If you change slab height democratically if 

maybe h = 0 then you can see that TM modes also will be coming into picture not only TE mode. 

So, in that case I can actually define for example, if I define a waveguide width here, so I see that 

difference between effective index of the fundamental mode here and this much, but if I design 

the waveguide width here, so difference is this one. 

 

So that means, depending on the waveguide width along waveguide width variation can control 

this value, by controlling that actually you can get the what is the separation between 2 stopband 

could be so here we have just shown that as a function of width were just calculating that lambda 

B 00 as a function of width where it will be there at a longer wavelength and lambda B 01 it will 

be shorter wavelength we find that this is the region where actually the bottom region actually 

called C band and above region about 1565 it is called L band.  

 

About less than 1565 nanometre that is called C band optical C band and optical L band. So, we 

now learned that it is really possible to design a device using distributed Bragg grating in which 

you can get 2 stopband in transmission out of this 2 stopband 1 band will be reflected backward 

direction that is associated to the coupling between forward propagating fundamental mode to 

backward propagating fundamental mode. 

 

But the coupling between propagating fundamental mode to backward propagating fundamental 

mode that will be missing in the reflection what because backward direction first order will not be 

supported.  
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So now, let us look simulation result, we have just consider H equal to device layer equal to 250 

nanometre W = 710 nanometre supporting 2 modes h equal to about 150 nanometres slab height 

both the modes are TE like mode we know that we have simulated earlier we have shown the 

results earlier and the find that really to stopband this is a simple simulation using FDTD 

technique that is available for also commercial software’s available finite difference time domain 

technique that means a solver Maxwell solver in time domain.  

 

So, you find that 1 stopband around this one around 1600 nanometres on the stopband here. And 

beyond this shorter wavelength region you see it is not really picking something like this. What is 

the reason because at shorter wavelength the waveguide itself is somewhat DBR structure actual 

somewhat coupling light to the slab modes that is why it is being lost also in this region. But if 

you just design maybe waveguide so title is that little bit wider waveguide if you use instead of 

710 nanometres or 1 micron something like that.  

 

Then you could see something characteristics like this, you would be getting something like this 

and then this and then this like this 2 different stopband and after a long wavelength at towards 

this shorter wavelength, you will see somewhere that is coupling to the slab. So, wider bandwidth 

wider width of the waveguide helps to get a very good distinct stopband with some passband is 

both side and in between also but you have to be careful that if you are going for higher 

waveguide width.  

 

Then you can eventually end up with guiding another mode. So, in that case you can expect one 

more stopband also that means, that particular stopband at some other frequency at some other 



wavelength it will be phase matched and in that case you can get another multiple stopband you 

will be getting. So, depending on the number of modes and phase matching condition you can get 

multiple stopbands in that transmission but in reflection only fundamental mode will be 

supported.  

 

Because input waveguide and output waveguide you are designing single mode waveguide 

structure because most of the integrated photonics or device structures, they are designed with a 

single mode waveguide structure only in the DBR structure if you want this type of some specific 

application I will explain also if you want to get this type of transmission spectrum, then you go 

for this device this is easy design basically.  

 

And you see here there is another one curve also soon, if you just increase the device temperature 

a bit then refractive index of the silicon integers and because of that, your n effective also 

increases. So, lambda B = 2 n effective period so when n effective slightly increased due to the 

temperature that is called thermo optic effects silicon is a very good thermo optic effect a 25 

Kelvin temperature if few increase.  

 

Then you see the Bragg wavelength, fundamental mode stopband and first order stopband both 

will be actually red shifted 2.2 nanometre red shifted why? Because n effective increases as you 

increase the temperature effective index or bulk silicon refractive index will be increased so that 

is why it will be like looking like that. And another thing it is also experimentally found that very 

interesting that instead of keeping the waveguide surface pre empty here you get a particular 

characteristic like this one.  

 

But now if you put a drop of water so that top cladding is water and water refractive index you 

know n water is about 1.3 and n air is 1 so that means cladding refractive index is increased, so 

once the cladding refractive index increase n effective will also increase. So that is how when air 

is given as a cladding of the waveguide structure, you see the red shift happening this red thing 

this is the thing both fundamental stopband and first order stopband red shifted.  

 

And red shifted at about 7.8 nanometres this case it is measured at one is about 6.6 nanometre 

because n effective for fundamental mode and n effective for first order mode they do not increase 

equally because of the cladding refractive index change. So, by changing the refractive index in 

the cladding material you can change determine the characteristics, but this eventually people 



exploited for sensing application suppose you have certain liquid and you know that had certain 

liquid will have certain refractive index and you do not know what is that material.  

 

So, you can guess just use that material in that liquid in the top or coat in the surface and then you 

see the Bragg wavelength, how much it is sifted and looking into the shift you can estimate that 

you can actually find you can try to guess what material could be in the surface. So, for bio 

sensing applications etcetera people are demonstrating different type of DBR structure in silicon 

photonics technology platform.  
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Now, I will show you that such a device also fabricated here it is so you see 560 nanometre and 

perturbation that delta w 150 so the about 710 nanometre, so this is w = 710 nanometre it is 

approximately supporting 2 modes and in this case it is 760 nanometre w so it also supports 2 

modes and we have fabricated device this fabricated same structure it is shown here and it is 

characterized this input grating coupler, output getting coupler, DBR structured is there around 5 

millimetre long waveguide fabricated. 

 

And this is about 450 micrometre getting structure fabricated. So, when it is coming and going 

and if you are tuning your tuneable source wavelength you are tuning then you see if there is no 

DBR structure reference waveguide. So, this type of characteristics wavelength dependent 

coupling is there in the grating coupler that is why you see the difference as a function of 

wavelength and this is the transmission.  

 



But when grating structure is there you see, there is 1 stopband here and other stopband is here 

and this region actually lost because of the coupling to this lab mode. So, this region actually your 

region were 1565 this side is so called this side is L band and this side is C band. So, you could 

see that L band will be passed through the DBR structure C band can be stopped completely.  

 

So, if you want to have certain band broad band if you want to stop, you do not want to allow to 

transmits in a certain destination, then we use this device only this band wavelength range up to 

here it will be passed again this range it will be stopped. So, some unwanted band if it is there, 

you can stop here both sides only a selected band you can transmit. So, you can design a device 

something like that, that is selected band will be passed it is a DBR structure normally it is used 

for stopband.  

 

But in this case you can have 2 stopband wide broad stopband here if you see it is more than 15 

nanometre stopband this side also more than 15 nanometre and beyond. But in between you get 

about from 1565 to 1600 about 30 nanometre bandwidth it will be passed. So, you can selectively 

a certain bandwidth you can actually transmit through silicon waveguide structure or DBS 

structure. So, I will stop here for this lecture today. 


