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Integrated Optical Components: Distributed Bragg Reflector (DBR) 

 

Hello everyone, today I am going to discuss about distributed Bragg reflector that is another 

important integrated optical components and I will discuss that this DBR structure using 

coupled mode theory which is as I said that coupled mode theory is somehow it is a good 

theoretical analysis you can understand most of the integrated optical component and we 

have already developed coupled mode theory power code directional coupling and contra 

directional coupling.  

 

So, as we already mentioned earlier that distributed Bragg reflector that is actually works best 

on the mode coupling in the contra direction when they are propagating and contra direction 

that means, one will be in the positive direction another mode will be in the reverse direction 

negative direction. So, considering that I will just highlight some kind of recap what we have 

learned so far based on contra directional coupled mode equations.  

 

And then I will discuss how to solve this coupled mode equation particularly for distributed 

Bragg reflector and then I will discuss about a design of an integrated optical DBR filter 

passive bandpass filter or band rejection filter you can use a DBR structure.  
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So, just go back to our distributed grating structure we discussed earlier that if you have a 

waveguide that is propagating along Z direction mode is propagating along Z direction it can 

be single-moded it can be multi-moded and waveguide you can consider this is the core 

whatever it is shown here in X Y direction X Y plane this core is there and surrounding 

cladding will be there and as long as the dielectric constant distribution for the waveguide 

epsilon a x, y is maintained.  

 

Then you can see all the guided modes they are orthogonal and they will be traveling 

independently they will not interact each other. However, if you have a certain kind of 

periodic perturbation here for example given from z = z 0 to z = z 0 + L with a perturbation 

so, epsilon a x, y which is added with another perturbation term that is delta epsilon x, y, z. 

So, in that case what we have taken that this perturbation is periodic with a periodicity of 

lambda capital lambda this is the periodicity.  

 

So, if you just start from here to here this is one period then it is repeating again another one 

and then it is repeating another one. So, it is a periodic structure that means, this white region 

we can consider that the height of the waveguide is reduced you can consider the width of the 

waveguide also can be reduced or increased periodically that can be also considered a 

periodic perturbation and that periodic perturbation.  

 

We can actually define as like this you have some kind of x y profile will be there that is 

actually called transverse perturbation E pt x, y and then longitudinal perturbation that is 

actually z we can decompose into 2 functions and then E pt x y we can define what type of 

perturbation it is in that cross section waveguide cross section how it is perturbation and 

longitudinal direction since it is periodic we can decompose into Fourier harmonics.  

 

So, if you see the spatial periodicity is lambda and Fourier harmonics it will be 2 pi over 

lambda times integer and it can be plus minus and so on and this b m is called Fourier 

coefficient. So, in that case I can define that this total perturbation we can together this E pt x 

y plus Fourier coefficient if I just consider that can be considered as a perturbation of m th 

Fourier harmonics along Z direction.  

 

So, we can write E pt x, y as a delta n square x y that is the refractive index you know 

dielectric constant if you know just square of the refractive index is equal to dielectric 



constant so, you if refractive index perturbation is delta n if you just square it then you get the 

dielectric constant if you multiply epsilon 0 that the permittivity or the free space in the free 

space and b m is written this we have discussed earlier and it can be 0 plus minus 1 plus 

minus 2 plus minus 3 and so, 0 means that is the DC component of the Fourier transform.  

 

Now, so, if you just think about that, let us define this longitudinal part we define as a S z 

defined function is there this one you are defining as a S z or you can write this as a E pl z 

longitudinal direction so that is we can write something like this b m e to the power the same 

thing we are just repeating here and perturbation duty is p lambda. So, this periodicity, you 

can consider this perturbation where the height is changed that fraction of the entire period 

that is called duty.  

 

So, I can consider p lambda is the duty where p is the 0 less than greater than 0 and less than 

1. So, that means, it is something this duty is less than lambda p can be up to close to 1 also. 

So, that is the duty and in that case we can find out this Fourier coefficient directly from this 

formula. So, we integrate 0 to p lambda e to the j m 2 pi / lambda z dz 1 over lambda and 

then we can find out b m and also we have seen that b m = b - m star that is actually property 

of this transfer function for the Fourier transform.  

 

And then you just integrate this one we get the Fourier coefficient b m in terms of duty cycle 

you remember that if duty cycle is just p = 0.5 then it will be half and then half and then you 

can find out what is the value p if you are putting half for example, here it is given if you are 

putting p equal to half then b 0 that m = 0 will be just half that means the DC component of 

the Fourier transform is just half and then other than DC component.  

 

If it is other value 0 not 0 plus minus 1 plus minus 2 and so on b m will be something you can 

just directly put here that p equal to half then b m value will be just j over m pi. So, that 

means b 1 will be j / pi and b - 1 would be also j / pi b - 1 will be j / minus this will be minus 

because m equal to minus but b - 1 star if you put then it will be j / pi again so, that is how we 

get b 1 equal to b - 1 star.  

 

So, that is how we get b 1 equal to j over pi we have written and since, you have one 

component coming like this if you are just introducing this one in your coupled mode 

equation, then longitudinal page matching condition will appear like delta beta = beta k - beta 



n - m 2 pi over lambda and then kappa so, called coupling coefficient C coupling between kth 

and nth mode because of the mth Fourier harmonics.  

 

We have expressed earlier that omega epsilon 0 / 4 b m that is a Fourier harmonics and then 

you can integrate E k star E n through delta n square that is actually so called coupling 

coefficient. So, you remember that this is actually dielectric perturbation and dielectric 

perturbation you have longitudinal term is there that longitudinal term actually clubbed with 

the longitudinal phase because that is also the beta k z beta n z will be there in the all the 

coupled equations.  

 

So, they are clubbed this one and that is why only the transverse direction whatever 

perturbation is there delta n square x y and field distribution for the kth mode fields 

distribution for the nth mode you integrate over wherever these 3 values are nonzero, you get 

the value and b m you can consider which Fourier harmonics is being considered for involved 

in coupling between 2 modes and that is how we can calculate we discussed this in details 

earlier already.  

 

So, here we can just repeat here just to take up take it forward, we know that for co-

directional coupling, we consider evolution of the mode 1 then we can write this equation and 

this equation for the other one and in that case, for co-directional coupling, we considered 

beta 1 and beta 2 greater than 0 because the beta 1 if it is a positive direction, mode 2 also 

either will be traveling also positive direction plus both are traveling in the negative direction 

then also plus.  

 

So, we consider that a beta one for co-directional coupling this is the condition that needs to 

be fulfilled. If this is the condition fulfilled If you have coupled equations are like this these 2 

equations and a beta 1 and beta 2 greater than equal to so, this would be less than or equal to 

0 that means contradirection this is a type error this is less than or equal to less than 0 that 

means one of them will be positive direction another will be negative direction.  

 

So, in that case, so, we get because this combination is in picture so, coupled equation one 

will be minus sign and other will be plus sign that is the difference actually, we said that for 

co-directional coupling the both is a minus sign and contradirectiona coupling both are 



opposite sign because you have beta k / beta k this term is there. So, depending on the 

positive and negative direction the coupled equations will be looking like that.  

 

So, this is required and we are talking about distributed Bragg reflector that is our discussion 

point then in that case we will be coupling light from a mode propagating in the forward 

direction to a mode propagating in the backward direction. So, mode will be coupled from 

energy will be coupled from forward propagating mode to backward propagating mode. So, 

that thing it at all some phase matching condition is fulfilled.  

 

Then we can see some kind of energy transfer and that energy transfer can be understood can 

be explained analytically using this 2 coupled equation if we can solve this 2 coupled 

equation, then we will be understanding how the mode 1 is evolved longitudinal direction and 

how mode 2 is evolved in longitudinal direction meaning along the z direction.  

(Refer Slide Time: 11:44) 

 
So, now, we will be discussing about solving coupled mode equations. So, we said that our 

this is something we are considering our getting structure top view we are saying and instead 

of height perturbation here for understanding purpose we consider understanding and 

technology implementation purpose normally instead of height modulation particularly for 

silicon photonics.  

 

People used to go for width Modulation waveguide width modulation so, here if you see 

width waveguide width it is periodically modulated from z = 0 to z = L. So, in that case, we 

are talking about coupling between forward propagating mode and backward propagating 



mode, forward propagating mode the associated electric field can be space dependent x y z 

dependent and time dependent we mentioned.  

 

Here f that means forward propagating mode and backward propagating mode similarly, we 

just write E b x, y, z, t. b for b stands for backward f stand for forward direction and this is 

your direction obviously, x direction and vertical direction your perpendicular to the screen is 

y direction. So, top view we are showing so, before that pre project z less than 0 the 

waveguide is uniform.  

 

So, all the orthogonal modes will be there if it is a multimode waveguide mode suppose 

fundamental mode is guiding field distribution will be like these and it will be propagating 

here and once it is entering into the grating structure there you have a perturbation periodic 

perturbation. So, there is a chance that mode will be coupled if it is a single mode 

fundamental forward mode and fundamental backward propagating mode they will be 

coupled.  

 

So, we can define 2 modes in the forward direction E f x, y, z we can write because of 

coupling there will be z dependent amplitude variation will be there we introduce A 1 z and 

field distribution is E 1 x, y and since it is forward propagating wave, so, phase will be e to 

the power j omega t - beta 1 z this is positive z direction propagating and if I consider another 

mode having field distribution of E 2 x, y.  

 

And propagation constant of beta 2 that is propagating in the reverse direction we can define 

backward propagating wave is E b x y z like that, in this case we have just consider general 

situation so, that it need not be the forward propagating fundamental mode needs to be 

coupled to the backward propagating fundamental mode it can be multimode waveguide any 

forward propagating mode that is characterized by beta 1 and E 1 will be coupled to the 

backward propagating mode having propagation constant beta 2 and field distribution E 2.  

 

And we know that this longitudinal phase constant difference delta beta phase difference 

what are the delta beta value we consider actually beta 1 - beta 2 / 2 pi over lambda and this 

is the coupled equation we discussed and we have to solve this coupled equation considering 

these boundary values. What is that boundary values A 1 z = 0 A 1 means this one forward 

direction at z = 0.  



 

We have some certain value this can be 1 also we can consider normalized or any value such 

that you can consider A 1 0 square equal to 1 watt also that means you can consider 1 watt I 

am launching then how much fractions will be coupled to the other modes, we need to find 

out you can consider one here we have considered the amplitude A 1 0 and another boundary 

value we must know that if something at all propagating in the backward direction you are 

launching from this side.  

 

So, there will be nothing coming from the left side. So, only thing is that because of the 

perturbation entire region, you can see that light will be can be propagating in the forward 

direction that can be coupled to the reverse direction. So, reverse direction if it is coupled and 

it is constructively building up then you can see that this direction reverse direction backward 

propagating mode, you can see some kind of energy it can be excited because of the 

perturbation.  

 

But beyond z = L you do not have any perturbation. So, you would not see any backward 

propagating mode here because you are launching from this side so backward propagating 

mode beyond z = L is 0. So, that is why if I have a forward propagating mode is having 

amplitude this one and backward propagating mode is this one A 2 z then A 2 z = L must be 

= 0. So, these 2 boundary values we must be knowing.  

 

If you want to solve how much power is being exchanged between these 2 modes, this 

boundary condition is known we have to find out that one based on that we have to solve 

these 2 differential equations. So, how will solve that first what do we do we just take this 

one I want to solve for example A 1 first A 1 z. So, here A 2 z is there this A 2 z I have to 

replace from here.  

 

So that I know A 2 equal to A 1 something is there so what I do this equation I do 

differentiation this equation with respect to z once more. So then we can get this one d 2 A 1 / 

dz 2 and then - j kappa and dA 2 / dz and I keep as it is this one and then next one I have to 

differentiate this one. So I will be getting j delta beta, j delta beta will be multiplied by - j so 

it will be + 1 + kappa delta beta A 2.  

 



So, just make a differentiation this equation with respect to z we get this one now, you know 

these value I can bring from here and these value A 2 I can bring from here A 2 I can 

represent in terms of differentiation on A 1 and dA 2 / dz I can take here I can substitute here 

then ultimately this one will be complete equation for A 1 that will be completely decoupled 

that equation will be completely decoupled from A 2.  

 

But inherently more 2 modes are coupled that that much we know but mathematically we can 

get independent equation for A 1 now. So, that equation will be looking like this I just 

substitute this one dA 2 this one dA 2 / dz equal to this one I substitute here - jk and then 

kappa delta beta A 2, A 2 I take from here I substitute here then I get this one and move on to 

that on a little bit simplify then you get this nice equation.  

 

So, this equation in works only A 1second order simple differential equation, but it is a 

complex differential equation the solutions A 1must be complex because j involve here delta 

beta is given here 2 modes here. So, we need to solve this one the solving this equation and 

we know that solving differential equation you will be getting constant and that constant 

values can be derived by these boundary values.  

 

So, we know that how we have solved similar type of differential equation for co-directional 

coupling but here only contradirectional coupling this - kappa square it will be kappa square 

there so, that is the only difference we consider this one after solving this one using this 

condition I get A 1 z same passion I have just little bit I did here few step I skipped because it 

is a procedure the same, the second order differential equation, you can just simple method 

you can use and use the boundary conditions boundary values.  

 

Then you get A 1 z will be like this and A 2 z will be like that, just a few steps you can try a 

similar like whatever we have solved for co-directional coupling case and in this case, S we 

have represented as a kappa square delta beta / 2 you remember that in co-directional 

coupling is was defined by kappa square + delta beta / 2. So, contradirectional case 1 minus 

sign plus sign minus sign is there that is why this minus sign translated here and we get a 

solutions A 1 z, A 2 z.  

 

So, that means, I now know how this A 1 z, A 2 z will be evolved as a function of z as far as 

if I know delta beta value and if I know the kappa value, because delta beta and kappa value 



if you know then we will be knowing s once we know s then I will be able to find out how z 

dependent amplitude will be varying for forward propagating wave and how z dependent 

value will be varying for a backward propagating wave.  

 

So, we have now solutions so, this solution from this solution if you see both A 1 z and A 2 z 

in terms of A 1 0 because A 1 0 is the value we know A 2 z = L that is actually 0. So, once 

we know A 1 0 value, how much amplitude I am launching in the forward direction I know 

what is the z dependent variations will be there for forward propagating wave and this is also 

A 1 0 as a function A 2 z as a function of A 1 0, A 1 mode means A 2 z will be just 

proportionally it will be there.  

 

So, I can say that reflection coefficient suppose this length is L that means I can say what is 

happening up to L this one and what is the value at z = 0 for example, z = 0 if I just z = 0 I 

will be getting A 2 z = 0 that means I have here I have launched here A 1 0 this direction and 

then these direction I will be getting A 2 0 that means if I put z = 0 I will be getting whatever 

field amplitude is reflected in the backward direction at z = 0.  

 

So, if I just put A 2 z = 0 and A 1 0 take ratio once I put z = 0 then numerator will be sL and 

this will be sL this will be sL, so sL is written A 2 0 / A 1 0 what it means it means A 2 0 

what is reflected from the system entire system A 2 at 0 whatever value and A 1 0 what is I 

have launched that means that can be considered as a reflection coefficient. So, I can find out 

for the entire structure what would be the reflection coefficients in this expression again you 

see unknown delta beta and s.  

 

So once you know delta beta once you know kappa then I can find s once you know s then I 

can find what is the reflection coefficient? So, this is how we can solve how the amplitude 

will be varying if we know all these any electric field propagating mode propagating from the 

forward direction or from the left to right, how much energy or amplitude will be coupled 

energy will be transferred to the backward propagating mode.  

 

So, far we have considered beta 1 and beta 2 I have not mentioned that without the 

waveguide is a single mode or multimoded only the condition we have imposed that the 

mode one of the forward propagating mode will be coupled to the one of the backward 

propagating mode and in that case, the backward propagating mode I am launching in one of 



the forward propagating mode and one of the backward propagating mode will be coupled 

depending on the delta beta value.  

 

Choosing delta beta value and then if I know that how much energy is being coupled to the 

how much amplitude is grown to the backward propagating mode and take a ration with the 

forward propagating mode exactly at z = 0 that will be giving you the reflection coefficient. 

Similarly, if I tried to make say A 1, A 1 z = L whatever the value you get at z = L and if you 

divided by A 1 0 whatever you have launched that will be actually your transmission 

function.  

 

So, I can find out what is the reflection what is the reflection coefficient what is the 

transmission coefficient and if you take our R R star then you get reflectivity and if I get tt 

star I get t that will be transmission coefficient transmission fraction of power will be 

transmitted that will be defined by t and if the structure entire structure is lossless then we 

know that r + t should be = 1 fine.  

 

So, the solution so, far we are getting very good if it is single mode waveguide that means 

beta L = - beta 2 only 1 mode will be guided fundamental mode then we can say that the 

coupling happening for the forward propagating fundamental mode to backward propagating 

fundamental mode. So, both are same they are propagation constant will be same only 

direction will be different because only fundamental mode beta L = - beta 2 is defined as beta 

and again we know beta = beta can be defined from the dispersion relation.  

 

Again and again we had discussed omega / c n effective or omega / beta equal to phase 

velocity c / n effective. So, that is known now, if I just substitute here beta L = - beta 2 equal 

to beta that means beta - beta - 2 pi / lambda that is your delta beta. So, delta beta will be 

delta beta we are getting 2 beta - 2 pi / lambda that is what I have written here. So, forward 

propagating wave you want to see if there is a coupling between forward propagating 

fundamental mode to backward propagating fundamental mode.  

 

Because of the past Fourier harmonics m = 1 by the way we have considered when I put 2 pi / 

lambda not m that means, we are considering only past Fourier harmonics because we can 

consider that you can design your structure so, that this delta beta will be close to 0 when beta 

1 - beta 2 - 2 pi / lambda consider as m = 1. So, in that case we consider this one m = 1 we 



will consider and delta beta again beta we know that this one this value we just put beta 

instead of beta omega / c n effective 2 pi / lambda.  

 

So, this is your delta beta now, you note suppose fundamental mode and single mode 

fundamental mode propagating the forward direction and only coupling possibilities there if 

you do not want to lose any energy outside then energy can be coupled to the backward 

propagating fundamental mode. So, the backward propagating fundamental mode or 

whatever the reflection coefficient you will be getting that is depends on delta beta.  

 

So, delta beta how this delta beta can vary the delta beta can vary by changing frequency, by 

changing effective index, by changing periodicity. So, once you have your waveguide fixed 

periodicity fixed modulation fixed that means the periodic perturbation is fixed that means, 

delta beta can vary with the frequency. So, that means, you can have delta beta equal to zero 

you can find a solution for one frequency and if you detune the frequency your delta beta will 

be nonzero.  

 

So, this delta beta you can vary as a function of frequency and add a function of frequency 

you can see reflection will be there. So, that means is r will be frequency dependent so, you 

get a reflection coefficient which is frequency dependent it is similar to ring resonator you 

know the transmission characteristics the transfer function is a frequency dependent 

particular wavelength is resonant into the ring resonator that particular wavelength the field 

will be stored inside the ring.  

 

Similarly, in that output that particular wavelength will be missing, but here also we see 

reflection is a frequency dependent. So, certain frequencies reflected back in completely that 

frequency will be absent in the transmission. So, we are now ending up with a device again 

which can be a transfer function can be a reflection can be a function of frequency. So, if you 

can design properly you can actually use this device for various applications.  

 

So, now, we consider if delta beta = 0 then we can consider if there delta beta = 0 means 

these value equal to these value. So, for that particular omega whenever you are solving that 

is actually omega b 2 beta will be 2 pi / c and beta will be omega / c n effective then we 

consider omega b that is the angular frequency corresponding to delta beta = 0 that angular 

frequency delta beta = 0 we consider Bragg frequency.  



 

Bragg angular frequency pi c / lambda n effective and if you consider again you know omega 

= 2 pi 2 pi c / lambda if omega B we can write lambda B. So, if you just substitute 2 pi c / 

lambda B then what we can get we can get one more equation lambda B lambda B = 2 n 

effective lambda. So, that means, if we know the periodicity of the periodic structure and if 

we know the effective index of the average effective index of the structure then we know this 

lambda B particular lambda B we can find where delta beta = 0 that is what we have solved.  

 

So, delta beta will be 0 for a given waveguide structure and periodicity under measure, that 

particular wavelength will give you delta beta = 0. So, what happens to delta beta = 0 for the 

reflection coefficient reflection coefficient and transmission coefficient and we know that 

when delta beta = 0 that is the longitudinal phase matching condition satisfied in that case 

coupling will be maximum that means, we can consider this r value will be maximum 

reflectivity will be maximum.  

 

That means, when lambda B exactly matched to this expression then that particular 

wavelength will be seeing maximum coupling in the backward direction and if you are just 

detuning from that lambda B then delta beta is nonzero. So, what you will see that your 

reflection will be dropping that is the common sense qualitatively we can understand. So, 

delta beta that is the 0 means longitudinal phase matching conditions satisfied.  

 

So, coupling will be maximum that we have learned from the coupled mode theory and if 

delta beta is nonzero coupling will be less. So, you will see less reflectivity for those 

wavelengths. So, that means your reflection is a certain band will be reject it will not 

propagate in the forward direction it will be reflected in the backward direction around 

lambda B that is a beauty of a DBR structure. So, around a particular wavelength some band 

if you want to reflect back use DBR structure.  

(Refer Slide Time: 31:23) 



 
So, now, what we will do, we will just try to discuss about how to design an integrated 

optical DBR filter with a detailed specification, I want certain DBR structure which will 

reflect a certain band of wavelength at a certain lambda we can define that as a lambda B that 

can be 1550 nanometer and I want around 1550 nanometer delta lambda some bandwidth 

about 1 nanometer to be rejected to be reflected and rest of the wavelength will be traveling 

without any problem.  

 

Can we design such DBR structure if I need suppose 5 nanometre can we design such 

structure and if I have how much it will be reflectivity, I need 50% reflectivity in that band, 

can we is it possible to design that if I want a very high extinction reflectivity, maybe 

everything should be almost 1 reflectivity 1 can we design that So, that is what we are going 

to discuss now.  

 

So, we just summarize this is a single mode guide we consider that means forward direction 

propagating E f same E not x. y j omega t - beta z and backward direction A 2 E not because 

it is fundamental mode in the backward direction also field profile will be same and 

backward direction + beta z we consider and delta beta we have defined that beta 1 - beta 2 - 

2 pi / lambda. So, beta 1 = - beta 2 = beta we consider then delta beta will be in this one so, 

we know what is the delta beta and from here delta beta = 0.  

 

Then omega corresponding to omega B and we know that boundary conditions boundary 

values that we are launching from this side and no backward propagating wave is there at z = 

L backward propagating wave will be here and forward propagating wave will be here. So, 



since backward propagating wave coming here that means backward propagating wave will 

be present also in the input side because whatever reflected back that will continue to 

propagate in this direction.  

 

And reflection coefficient we have derived by solving differential coupled differential 

equation and if we want to know reflectivity just take complex conjugate you will be getting 

that this one complex this is a complex value complex conjugate then we will be getting and s 

we have defined s is actually depend on kappa and delta beta. Now, we want to design what 

first of all we need to know kappa.  

 

So, thing is that obviously, this reflectivity depends on kappa as well as delta beta. We said 

that any coupling possible when phase matching condition is close to 0 delta beta close to 0 

and kappa is nonzero. So, delta beta tends to 0 and coupling coefficient must not be equal to 0 

higher the coupling coefficient more strength coupling strength will be more. So, first thing is 

that calculating coupling constant for this type of DBR structure.  

 

How to do that, we just try to see the cross section, any cross section if you see in the DBR 

structure, we will see similar to this one. So, you see, this is the entire waveguide width that 

means I am talking about this one, that is traced along X direction entire width X direction, 

this is w and then you see width is modulated, the modulated width shown here this side and 

the side I have shown here one site that means x 1 to x 2 and y 1 to y 2 this is a re waveguide 

structure silicon on insulator just example we have given earlier also.  

 

This is some refractive index substrate that is buried oxide box oxide and n c can be here can 

be oxide also and this is n d that is the device layer refractive index normally we know that n 

d greater than n s greater than n c or equal to n c. This is the condition and we know that any 

2 mode involved in coupling the coupling coefficient defined by for a periodic structure 

kappa it is 2 mode, mode 1 and mode 2 coupling between mode 1 and mode 2.  

 

Because of the 1 Fourier coefficient m = 1 omega epsilon 0 / 4 Fourier coefficient b m instead 

b m you remember that b m = 2 / m pi we consider for rectangular periodic perturbation, we 

consider 1 and mode 1 field distribution mode 2 field distribution and then refractive index 

modulation. So, we see that in the cross section this region refractive index is modulated this 



radial refractive index is modulated that means, this region instead of silicon now, n d you are 

getting n c.  

 

So, in this 2 region I have delta n = n d square instead of n d square you are having n c 

square. So, that is actually delta n square. So, delta n square means refractive index square 

how much refractive index square is changed in this region and in this region so, delta n 

square I know but that that is true only x 1 to x 2 and y 1 to y 2 region this type of refractive 

index modulation you have done in your periodic perturbation.  

 

So, that means, this one I can write simply n d square - n c square and that is happening 

which region x 1 to x 2, y 1 to y 2. So, I can write x 1 to x 2 I should integrate y 1 to y 2 I 

integrate. So, whatever the E 1 x y E 2 x y in this region is there how much overlap is there 

with the grating modulation that will be your kappa value simple only thing is that you need 

to know propagation a field distribution of guided mode if it is single mode you can solve 

numerically.  

 

What is the full vectorial method we have discussed? So, use that and you get your field 

distribution. So, now what you get I just simply C 12 I am writing here and I know that C 12 

equal to C 21 - 1 star that is a Fourier coefficient we discussed that complex conjugate of the 

Fourier harmonics that is backward m equal to plus and minus they will be equal and we 

define that kappa this is the kappa value we write omega epsilon 0 / 4 and b 1 b m we have 

written as j / m pi.  

 

So, b 1 = j / pi I have written and I will come to this point here a little later and then delta n I 

said that in that n d square / n c square that will be their integration will be x 1 to x 2, y 1 to y 

2 I have written that one, but these one what is this. This you know that whenever we just use 

a modes mode field distributions we consider this mode field distribution E 1 star x, y, E 2 x 

y dx dy = delta 12 2 omega mu / beta.  

 

So, that type of non while developing coupled mode theory we have used that 1 mode is 

actually can be associated with 1 watt normalized to 1 watt and that integration is if it is the 

same mode than 2 omega mu / beta we have used that orthogonality condition utilized and 

since now I am calculating numerically I have to consider there this individual mode will be 



normalized and normalization will be first mode will be normalized to if you write it will be 

in field it will be omega mu naught / beta 1.  

 

And another will be 2 omega mu naught because this is a square comes. So, when you are 

getting individual field that will be 2 omega mu naught / beta 2 and if you multiply that one 

that is coming like that, if 2 modes are different, but our interest is that mode 1 and mode 2 

will be same that means beta 1 = beta 2 should be called omega / C n effective that is the case 

So, I can write here beta 1 beta 2 omega / c.  

 

So, if I just substitute n effective here then it will be simpler equation. So, for single mode 

waveguide E 1 x y equal to E 2 x y = E naught. So, just put here all the values I am putting 

simplifying here and of course this 2 why this 2 is coming because I am integrating x 1 to x 2, 

y 1 to y 2 only this region if your perturbation is the other side that means, you have to 2 

times you have to multiply if perturbation only 1 side then this 2 is not required.  

 

So, there are also DBR structure people demonstrate having grating structure in 1 side only. 

So, this is kappa value we can simply calculate if we know the field distribution and if we 

know what is the perturbation region and we just multiply n d square - n c square and n 

effective of the guided mode. So, that is that straightforward whatever we have developed 

using coupled mode theory from there we can find out what is the kappa value.  

 

So, kappa value is independent of periodicity but it is dependent on duty cycle depending on 

the duty cycle you have this expression b m = j / m pi. So, it is actually considered for 50% 

duty cycle b m we consider this is actually this expression is for 50% duty cycle if duty cycle 

is differing then whatever the value comes the b m expression that has to be considered. So, 

in this case we consider the duty cycle is 50%.  

 

So, p equal to half we consider and duty is p lambda you remember we have discussed on 

that one. So, kappa value we know how to calculate you have a single model guide and you 

will know how much perturbation normally you know coupled mode theory developed based 

on the weak perturbation. A perturbation is very strong this type of kappa calculation may not 

match actually it can differ.  

 



If you calculate like this way in that case if it is a strong perturbation then you have to go for 

direct solution of Maxwell's equation you may not get any analytical formula. So, you have to 

solve Maxwell's equation for the entire structure so called FDTD method finite difference 

time domain method and then you can get how much you can find out what is the field 

reflecting backward direction then you can find you do not need coupled mode theory in that 

case.  

 

Coupled mode theory works for normally for small perturbation, but most of the perturbation 

we use for DBR getting structure somehow this kappa calculation matches very well. So, this 

is what it is shown. So, for example, a waveguide dimension of 500 nanometer and device 

thickness is this one this device layer thickness is 220 nanometer fondly used and h that 

means the slab height is 150 nanometer. So, if it is 220 nanometer that means this one is just 

70 nanometer raised. So, if this is the case then we can consider x 1 - x 2 = delta W.  

 

This side delta W this side delta W and both sides this delta W if you are varying an x 

function here and if you calculate kappa by solve numerically they need to close like that. So, 

as you increase the modulation that means width variation periodic width variation both side 

if you are considered 10 nanometer means 10 nanometer this side x 2 - x 1 and 10 nanometer 

this side you are modulating both sides.  

 

So, in that case kappa value it is coming you see per micrometer 0.00 pi per micrometer 

kappa expression if you see dimensionally that comes with per micrometer. So, as the 

modulation increases the periodic modulation periodic perturbation that increases your kappa 

value increases. So, stronger and stronger kappa will be stronger because this integration 

value will be increasing more and more.  

 

So, again I said that this kappa this coupled mode theory everything it matches very well 

when kappa is smaller here we have considered up to 50 nanometers that means 500 to 50 

nanometer perturbation 500 is the width 50 nanometer is a perturbation that means 10% 

modulation. So, up to 10% we say that somewhat it can match what our actual scenario is 

that. 

 

The coupled mode theories are highly approximation you have considered first condition is 

that the field is amplitude that A 1 z and A 2 z that is actually slowly varying amplitude 



second order derivative we have ignore. So, that is how stronger perturbation it will not be 

very much useful to develop coupled mode theory but you can get an idea trained if you use 

this one even if it is kappa is more you calculate using coupled mode theory.  

 

You get a trained at least you can say that okay I am going to get this much reflectivity or this 

much reflection coefficient. So, kappa is the first thing we need to decide how much kappa 

we want higher the kappa I can get stronger the reflectivity reflection coupling from the 

forward propagating mode to backward propagating mode. So, kappa I can decide according 

to our DGR specification. 

 

Now, next thing is that calculating field amplitudes a 1 and A 2 z I would be now interested 

to know how A 1 z actually varying as a function of z for a given kappa I know that A 1 z 

expression I have derived earlier with this boundary values A 2 z I had the analytical formula. 

So, I know now kappa value I can with a certain modulation I can estimate what is the kappa 

value I can now put delta beta = 0.  

 

For example or some value some detuned from omega B or lambda B some value will be 

there I can substitute here and then as a function of z I can find a 1 0 I can consider so z = 1 

as a function of z I can find how A 1 z it is you see cos hyperbolic sine hyperbolic cosine so 

hyperbolic cosine it is coming. So, now if I plot it you can use your MATLAB program to 

plot this one to see how it is varying whether this A 1 z is significantly reducing as you 

function of z or it is slowly varying.  

 

Something like that you can find out similar thing can be happening A 2 z you see this is the 

plot for delta beta = 0 I have consider exactly page matching condition and then I find delta 

W I consider about 25 nanometer corresponding kappa is approximately 0.01 per micrometer 

and we consider periodicity about 292 nanometer. So, periodicity 292 nanometer we consider 

to match the lambda be exactly equal to 1550 nanometer.  

 

That is the communication band exactly middle of the C band optical C band then I see that A 

1 z at z this is equal to 0 this is z = L 100 micrometer 100 micrometer long grating I consider 

with a periodicity 290 nanometer duty cycle 50% modulation 25 nanometer this side 25 

nanometer this side 25 nanometer A 1 z that means this one I am just talking mode of that 

one you say starting from L I am consider that A 1 0 this one actually equal to 1.  



 

Say it slowly almost exponentially it is decreasing and up to here it is reaching something like 

that and then what do you see A 2 z as I said that A 2 z = L = 0 that is 0. Then that will be 

actually increasing, increasing this direction, backward direction property so backward 

direction propagating field strength will be more and more towards z = 0 because it is 

building something like that.  

 

So when it is coming this one at z = 0 backward direction the field will be at this amplitude 

and this will be amplitude. So, in this direction here I will be getting the backward 

propagating wave mode will be around say 0.55 amplitude and forward direction it will be 1 

so forward in this region I will be getting forward direction amplitude is 1 and backward 

direction mode also will represented that will have 0.55.  

 

So if you take ratio that means you can find out the reflectivity is 0.55, 55% will be reflected. 

So, that is what we get. So, that means if we just consider kappa equal to this one n = 100 

micrometer then you get about 55% will be reflected or something 50 means amplitude 0.55. 

So, R square will be less 25% or so, it will be reflected back. So, now we know that if I use 

for a given kappa value if I use 100 micrometer, whether everything will be reflected or not 

we find that not everything will not be reflected. 

 

So, what do we do? We do 2 things we can increase the kappa value or we can increase the 

length mode we have increased to just show here. So, here if you see now delta W that means 

modulation we have increased to 50 nanometer both side this side 50 nanometers that side 50 

nanometer. This is 50 nanometer. This is 50 nanometer. Kappa is increased to 0.23 kappa 

calculation we have shown earlier how to do that and lambda same periodicity and length you 

are considered 200 micrometer.  

 

Then we see interesting because kappa increased you see within 100 micrometer length z = 0 

to z = 200 you see, this is actually your A 1 z, A 1 z a rapidly falling reducing and if you see 

if you do here you have backward wave also you see as it falls backward propagating wave 

will be also increasing that means almost 100% it will be reflecting back A 1 z will be 

decreasing and as you decrease backward propagating mode will be picking up.  

 



So, you get almost 100% reflectivity and that even you do not need to go up to 200 

micrometer, but this kappa if you just terminate here about 120 micrometer getting length, 

then your entire field whatever you are launching from this side, that will be reflected back. 

So, you can either increase L or increase kappa. So, depending on that you can find out how 

much you want to reflectivity around delta beta = 0 corresponding lambda B you can just find 

out lambda B = 2 n effective period that is what we have derived earlier.  

 

So, one thing is that reflectivity we can estimate kappa value depending on the kappa value I 

can just predict what is the reflectivity? I would get; for a given length if I see that we I 

cannot increase kappa more because of loss is or some technological problem then I can go 

for longer length to get more reflectivity. So, that is what we get. Now, next thing is that 

calculating reflections and transmission spectra I said that delta beta = 0 you coupling will be 

more maximum and kappa must be not equal to 0 more kappa is better.  

 

But again I said that delta beta close to 0 just a little bit detune that also will give you some 

effect in coupling. So, around the delta beta = 0 and corresponding lambda B = 1550 

nanometer I would see some kind of band. So, band will be rejected maybe reflectivity may 

not be as high as for delta beta = 0 but you may get a band. So, to get a transmission and 

deflection spectrum how to process it you know we have R equal to here we have written and 

capital R this is the amplitude deflection coefficient.  

 

This is the power reflectivity just complex conjugate if you take this one is the value you will 

be getting and we know that delta beta equal to this one this delta beta wave just reproduced 

here. So, just omega you vary then you can get when matching exactly delta beta 0 that 

means, I can find this one if you are putting 0 then I can find it omega B corresponding to this 

value for a particular period omega B I will be getting lambda B I will be getting now.  

 

You just detuned your frequency or wavelength from that omega B that means delta beta I am 

detuning from 0. So, in that case but delta beta = 0 if I put I know reflectivity equal to this 

one if we just put delta beta = 0 that means S will be delta beta 0, S will be equal to just 

kappa, S = kappa delta beta 0 then what I will be getting here I will be getting sin hyperbolic 

and distributed this term will go once this term will be go weighing then find S square will 

become kappa square.  

 



So, sine hyperbolic square divided by cost hyperbolic square you will be getting tan 

hyperbolic square for delta beta = 0 reflectivity will be tan hyperbolic square compile and we 

know delta beta = 0 corresponding omega B I derived earlier again repeating here and lambda 

B corresponding to this one and if it is lossless case because this DBR structure no loss there 

will be some loss technically because there will be some kind of roughness etc will be 

introduced.  

 

Some loss will be there but for understanding for analytical discussion purpose we consider 

that it is a lossless case. So, in that case reflectivity and transmissivity R and T just add they 

must be equal to 1. So, once you know R, then you can find t = 1 - r that means, energy 

conservation whatever power will be transmitted that actually related to whatever power is 

reflected R + T will be reflection plus transmission total will be 1 if you are launching power 

equal to 1 watt for example, you can normalize to that.  

 

Now, we see you plot for a delta W = 25 nanometer that is corresponding kappa = 0.01 

micrometer we calculated earlier for these waveguide parameters obviously and lambda = 

252 nanometer periodicity and 100 micro meter grating length you see, this is your 

transmission characteristics, this is your reflection characteristics that means, this is your R 

and this is your T. T = 1 - R basically you see at exactly around 1550 nanometer that is what 

our period is matched because lambda B = 2 n effective lambda.  

 

You know the effective index of the waveguide and perturbation periodicity is lambda. So, n 

effective periodicity 292 and n effective of this waveguide if you calculate and multiplied by 

2 that would be lambda B we matched exactly 292 nanometer and after MATLAB simulation 

it can it is showing that around 1550 nanometer you see you have a not this one is not R this 

is actually T and this is actually R.  

 

This is the reflection you see this is the reflectivity this part it is reflected back and what is 

reflected back that will be missing in that transmission. So, this is the transmission 

characteristics blue one here it is transmission characteristic red one is a reflection 

characteristics. So, you see reflectivity here if you see how much you are getting nearly 60% 

and 60% at 1550 nanometer.  

 



Then transmission there you are getting 40% that means, exactly at 1550 nanometer 

wavelength lambda B = 1550 nanometer wavelength you can expect 60% reflectivity 60% of 

the power will be reflected back 40% will be transmitted but again you see since delta beta 

around 0 is 1550 nanometer corresponding to 1550 nanometer need to be adjusted delta B, 

but if you detune by detuning the wavelength it will detune the wavelength omega will be 

detuned omega will be detuned means delta beta will no more be 0.  

 

So, if you can increase the wavelength from lambda B positive direction or negative direction 

delta beta will be increasing compared to 0 when it is increasing coupling will be less 

coupling means forward coupling between forward propagating mode and backward 

propagating mode and then you see your reflection will be dropped rapidly and transmission 

also you will be seeing back.  

 

So, specific band particular band you are getting in the reflection and that will be missing in 

that transmission. So, it is a very nice device you can design suppose I want this much 

reflectivity this much bandwidth, I can design that. So, suppose what decides this bandwidth, 

we will discuss that how much band what is the 3dB bandwidth for example, F W H m that 

actually very important for application point of view.  

 

So, let us move on to that before going into that if I just see, if you are just going for a little 

bit stronger coupling both side 50 nanometre modulation this side width is 50 nanometre this 

side 50 nanometre. So, corresponding kappa if you calculate that is actually 0.23 micrometre 

per micrometre period I have not kept same and I have considered 200 micrometre long need 

not be 200 micro meter because we have shown that for this kappa even 150 micrometres is 

enough.  

 

But we consider 100 micrometer, just to get reflectivity and transmittivity transmission 

reflection and transmission. So, you see now, this reflection is the red curve this is R and this 

is your transmission so, along with the main peak, this is actually lambda B corresponding to 

lambda B around 1550 nanometer you get a particular band almost flat top reflection you are 

getting with a particular band, but you get also some side loops both side reflection side 

loops.  

 



So, normally that side loops also sometimes very important sometimes it is very problematic 

also some applications. So, there are some engineering methods some design things are there 

you can actually design your DBR structures with some kind of upward digestion etc. so that 

you can actually remove this side loops, but here our interest is that how to decide a design a 

DBR bandwidth with very high reflectivity.  

 

So, for that purpose we take help of only the reflection spectrum just concept transmission 

and I have just removed and reflections consider and we can consider this as your Bragg 

wavelength according to this one, the Bragg wavelength is defined 2 n effective lambda. So, 

lambda if you put any n effective waveguide if we calculate then lambda B exactly will be 

getting around 1550 nanometer and so on.  

 

Now, you see as you go away from lambda B this side or this side that means your delta beta 

not equal to 0 then your reflectivity drops and it is 0 value, you see this will be minimum at 

first minimum and second minimum third minimum fourth minimum and so, it will be side 

loops will be coming like that. So, we consider that where is actually happening first 

minimum right side and first minimum left side that particular width if we defined delta 

lambda S B that is actually called stopband.  

 

So, called S B stands for stopband delta lambda S B stopband that can be considered as a 

bandwidth another definition is 3dB bandwidth of course, but since we get a clear 0 in both 

sides you 0 reflections. So, I can consider this band between this 0 first 0 both side that can 

be considered as a bandwidth. So, how to do that I know this one all this expression I have 

written a little bit move on what we do R = 0, for L not equal to 0 kappa not equal to 0 is that 

possible.  

 

Certain length is there getting length L not equal to 0 kappa also not equal to 0 because your 

grating is there period is also 292 nanometer is there. So, for that if you just inspect this one 

this characteristics carefully when it will be 0 you have a numerator denominator obviously 

anytime numerator 0 means R will be equal to 0. So, we can say that sin hyperbolic sL must 

be equal to 0 but sine hyperbolic sL if you just put must equal to 0, this will be putting equal 

to 0 at the same time sL square cos hyperbolic sL should not be equal to 0.  

 



If this is equal to 0 then it will be indeterminant 0 by 0 indeterminant I want exactly 0 R equal 

to 0 when that is possible. Let us stick first if I put sine hyperbolic sL equal to 0 hyperbolic 

function if you just write sin hyperbolic function x is normally e the power x - e to the power 

- x / 2 and cos hyperbolic x = e to the power x + e to the power - x / 2 that is actually like a 

normal method.  

 

Normally when you consider sin x, normally e to the power ix - e to the power - ix / 2 you 

define similarly because hyperbolic so x is the real here. So, in that case we can write this one 

so sin hyperbolic sL we can write like this. So if that is actually equal to 0 you can just little 

bit do little bit algebra e to the power 2sL must be equal to 1. So for R = 0 this is one 

condition numerator I am considering.  

 

So, it will be j 2 p pi it should be equal to 2sL, 1 means instead of 1 I can write like that. So 

that means this sL if it equal to j p pi, then this one will be numerator will be 0 but I know 

that sL = j p pi and what is p, p is integer p can vary from 0, 1, 2, 3 that is your p value but 

once you get p = 0 s will be equal to 0 because L not equal to 0. So, that means this one also 

will be 0 this part also will become 0.  

 

So, that means when I put sL = 0 for p = 0, that means this is 0 this is 0, this is also will 

become 0 that means indeterminant that is a p = 0 will not consider rather what you consider 

p instead of starting from 0 we can say 1, 2, 3 so on, so p is defined like this, so p = 1,2, 3 and 

so on the numerator will become 0 and denominator will become non-zero. So in that case I 

can get R values will be 0.  

 

So p = 0 means p = 1 means we will be getting first minima p = 2 means another R = 0, p = 3 

that means P I am varying means I am changing very basically delta beta if I am just 

changing s value sL changing means s actually directly depends on this one so s is varying 

means delta beta is being changed. So, delta beta changed means I am considering minima I 

can get periodically when p = 1, 1 minimum R = 0 p = 2 another minima p = 3 another 

minima and so on I will be getting so little bits replace it.  

 

sL is this one means s square L square that means j = - 1 j square p square pi square L I take 

this side s square this one why I have written s square because I know the s square expression 

s square expression is kappa square - delta / 2. So, that means this s square I have written here 



and p square pi / L square I have written here. So, now, I can write delta beta now is 

discretized value for certain delta beta p value according to 1 I can write 1, 2, 3, 4 so on.  

 

For that particular value R can be equal to 0 we remember that delta beta = 0 R cannot R is 

the maximum now, I consider R I am getting 0 for delta beta p this expression plus minus this 

one. So, delta beta kappa square I take this side so, I write so, p = 1 means I will be getting 

delta beta p 1 and there will be 2 values so, delta beta plus minus direction I also I will be 

getting minima’s and left hand side that is the minimum all the minima whatever I am getting 

in the transmission spectra that I can actually express analytically.  

 

For which delta beta but here delta beta is represented in terms of lambda we know how to 

convert delta into lambda or frequency, this one delta beta I just change omega then delta 

beta will be changing from 0, I have some value 0 omega B I will be there now I am just 

changing from that omega from omega B then I get delta beta non-zero. So, that 

corresponding omega can be lambda.  

 

So, I can get corresponding delta beta value and corresponding delta beta value will give you 

these values. So, this is straightforward mathematical equations you can just try to do that. 

So, to calculate central stop band delta lambda B I have to consider p = 1 for p =1 I will be 

getting delta beta p 1 value plus another value minus plus minus because square root is there I 

just tried to find out delta beta plus minus value so, what we called delta beta p plus equal to 

+ 2 kappa naught and delta beta minus.  

 

I will be writing - 2 kappa naught what is kappa naught kappa naught I am just considering 

these one because kappa square plus you have to add pi / L pi square / L square that total 

thing I am just representing as a kappa naught square. So, that means delta beta plus when 

delta beta plus when delta beta is plus 2 kappa naught there I will be getting one R = 0 and - 2 

kappa naught there also I will be getting 1 0.  

 

So, that means this corresponding to delta beta = 2 kappa naught plus and this minima 

corresponding to delta beta - 2 kappa naught where kappa naught equal to this one kappa 

naught square is defined by this one. So, I need to understand what is this what is 

corresponding lambda here and what is corresponding lambda here and if you subtract then 

you will be getting the bandwidth of the filter.  



 

So, you can find out what is the particular bandwidth you want to reject from this structure. 

So, now we go this delta beta plus corresponding to 2 kappa and I corresponding frequency I 

write omega 1. So, delta beta + 2 omega 1 / c n effective - 2 pi / lambda and 2 kappa naught 

kappa naught value I know here and delta beta minus I will be writing another frequency 

omega 2 2 omega 2 / c n effective omega 2 like this.  

 

So, this thing basically what I am saying that this is corresponding to omega 1 and this is 

corresponding to omega 2 corresponding lambda you can calculate that is straight forward. 

So, I know that a certain omega 1 I supposed to get 2 kappa naught delta beta and another 

frequency I get - 2 kappa naught so, between omega 1 and omega 2 whatever the value band 

that particular band sees reflection from the structure.  

 

So, if we subtract these 2 what I get this one basically we write beta omega 1 omega / c n 

effective for omega 1 frequency so, I write 2 beta omega 1 - 2 beta omega 2 this value this 

value will be cancelled and 2 kappa naught - 2 kappa naught it will become 4 kappa no 

naught t and 2 2 cancel it will be 2 and beta omega 1 and beta omega 2 whatever the value.  

 

So, I am getting beta omega 1 - beta omega 2 that is what we have written as delta beta sb 

what I am writing because within that whatever beta comes that is actually sees reflection. 

So, that is why we called it delta beta stop band. So, if we just subtract this beta omega 1 and 

beta omega 2 within that so, beta omega 2 to beta omega 1 so, omega 1 to omega 2 whatever 

beta comes that beta values actually will not see any will see some kind of reflection in the 

main peak.  

 

So, that delta beta sb I have written as 2 kappa not so, beta 1 beta 2 again I want to find out 

corresponding frequency. So, delta beta 2 frequency I have to converse all lambda I have to 

convert I know that omega = beta equal to I know that beta equal to omega / c n effective. So, 

if I do d beta / d omega then I know that this is n g / c that we have earlier already discussed. 

So, d beta / d omega equal to basically 1 / v g or d omega / d beta equal to group velocity and 

phase velocity.  

 

So, from the dispersion relation I can write this one d omega / d beta equal to c / n g. c is the 

velocity of light and n g is the group index. So, I get the group velocity c / n g d omega / d 



beta now, I can find delta beta and delta omega relationship if we know the group velocity. 

So, I write delta omega if it is stop band corresponding delta omega stop band corresponding 

delta beta sb. So, delta beta sb if I scale to frequency.  

 

That means, I have to multiply n g / c whatever delta beta whatever value 2 kappa naught is 

there if I multiply n g / c then you will be getting frequency domain stop band a straight 

forward so, if we do so, frequency movement that means 2 c / n g kappa naught, kappa 

naught value is this one square root of this one. So, delta omega is equal to this one and again 

you know omega equal to 2 pi c / lambda.  

 

So, delta omega equal to I can get delta omega = 2 pi c / lambda square delta lambda minus 

sign will be there minus sign if we do not consider then this delta omega you can consider 

delta lambda sb. So, this is an important formula I can find out suppose I want a particular 

band to be reflected I have to define kappa value, I need a particular kappa value and if I 

know L and periodicity defines the Bragg wavelength.  

 

I know the group index then I can find out how much band what is the bandwidth it will be 

reflected back. So, I can define it I can design a DBR distributed Bragg reflector which can 

actually reflect a particular band and that particular band is defined by length. So, longer the 

length longer the length it will be narrower L can be infinite very large then this can be 0 then 

in that case only kappa dependent for very long grating structure I think length does not 

matter what is the bandwidth it is reflecting what reflection bandwidth.  

 

But for a shorter length of the grating it is actually related with the L we can define that one. 

So, that is how if I go back to this this structure so, this band this stop band particularly this 

whatever we have represented this delta lambda sb that actually depends on your lambda B 

square this lambda B square / n g proportional to n g and then square root of kappa square + 

pi square / L square this this is the expression already we have defined here.  

 

We have discussed lambda B square pi n g with this I stop here for you know now you have 

learnt now how to design a DBR structure if it actually if you know that it is it has to be 

designed in silicon, silicon on insulator platform silicon photonics platform for photonic 

integrated circuits you know the waveguide dimension what is the technology limitations 

how much modulation you can do and depending on that, you can actually design your DBR 



filter for a certain bandwidth of spectrum to be reflected or to be stopped, thank you very 

much. 


