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Good morning. Today, we will discuss the distribution of the arrival epochs and the𝑆
𝑛number of arrivals until time , of a Poisson process. So, recall that we defined a Poisson𝑡 𝑁(𝑡)

process as a counting process where these interarrival times , et cetera are IID𝑋
1
,  𝑋

2
,  .  .

exponentials, and these are of course the arrival epochs , ... . We know that .𝑆
1

𝑆
2

𝑆
𝑛

𝑆
𝑛

=  
𝑖=1

𝑛

∑ 𝑋
𝑖

So, the distributions of 's are independent identically distributed exponentials with𝑋
𝑖

parameter . So, what is the distribution of ? Multiply in Laplace domain. Of course, see,λ 𝑆
𝑛

the basic thing is that these are independent random variables, so, you can, the density of the

sum is given by a convolution of the density of each of these. And of course, the density of

each of these is the same, which is an exponential.

So, if you take; so, ; for each of these 's, And, since these𝑓
𝑋

(.) 𝑋
𝑖

𝑓
𝑋

(.) =  λ𝑒−λ𝑥,  𝑥 ≥ 0. 𝑋
𝑖

's are independent, we can write; since are IID, we can write . It is𝑋
𝑖

𝑓
𝑆

𝑛

 =  𝑓
𝑋

⊗ 𝑓
𝑋

⊗... 𝑓
𝑋

an fold convolution. This is an fold. So, you can sit and convolve the exponential𝑛 𝑛



distribution times. Or if you know something about Laplace transforms, you can take𝑛

Laplace transform, multiply it.

So, you take the power of the exponentials Laplace transform and then invert back. So,𝑛𝑡ℎ

what you get when you do this is something known as the Erlang density. So, you get 𝑓
𝑆

𝑛

(.)

when you do all this fold convolution, you get,𝑛

𝑓
𝑆

𝑛

(𝑡) =  λ𝑛𝑡𝑛−1𝑒−λ𝑡 
(𝑛−1)! ,  𝑡 ≥ 0

So, you can easily calculate the density of the arrival epoch. So, you put , you get𝑛𝑡ℎ 𝑛 = 1

back the; so, for , what happens? , right? . So, you should get back what?𝑛 = 1 𝑆
1

𝑆
1

=  𝑋
1

The usual exponential which you do. You can just put and check that it works out.𝑛 = 1

Now, this is just the marginal distribution of . So, in order to specify the process; see, what𝑆
𝑛

specifies a process is the joint distribution of these 's or 's.𝑋
𝑖

𝑆
𝑖

The joint distribution of s, of course, we know; they are all independent exponentials. But𝑋
𝑖

the joint distribution of 's, we have to calculate. So, what we have calculated through this𝑆
𝑖

convolution formula is only the marginal. So, if I ask you what is the joint distribution of

for any , then what happens? It is a little more non-trivial. See what I mean? So,𝑆
1
,  𝑆

2
,... 𝑆

𝑛
𝑛

question:
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What is the joint distribution of ? This is the question. Now, let us do this for𝑆
1
,  𝑆

2
,... 𝑆

𝑛

. So, and are the first two arrival epochs. Now, and are of course𝑛 =  2 𝑆
1

𝑆
2

𝑆
1

𝑆
2

dependent. and are independent, but and are dependent. So, they have some joint𝑋
1

𝑋
2

𝑆
1

𝑆
2

distribution, which is not just the product or anything. Now, of course, has to be bigger𝑆
2

than or equal to ; so, clearly dependent.𝑆
1
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So, what is ? You can write this as, using the definition of conditional densities,𝑓
𝑆

1
, 𝑆

2

(𝑠
1,

𝑠
2
)

you can write this as . This you know, right? you know the𝑓
𝑆

1

(𝑠
1
) .  𝑓

𝑆
2
|𝑆

1

(𝑠
2
|𝑠

1
)

definition of conditional density; that is what I am using. The reason I am doing this is

because, once I condition on , the further time to is well-known. What is it? It is𝑆
1

𝑆
2

exponential. So, I know that. So, I want to exploit that property.

So, you are looking at something like this. So, this is 0; that is ; that is . So, given that𝑆
1

𝑆
2

this guy is realised as , what is the distribution of that? So, given , this width is just𝑠
1

𝑆
1 

=  𝑠
1

an exponential. So, if you want this to be , then this width should be just ; that is𝑠
2

𝑠
2

−  𝑠
1

what we are going to use. It is very simple. So, this is, of course, . So, this is what?𝑆
1 

=  𝑋
1

The first term is .λ𝑒
−λ𝑠

1

So, you are conditioning now on , and you want , which means that the realisation𝑆
1 

𝑆
2 

=  𝑠
2

of should be . So, this is just the density of the , evaluated at . And this𝑋
2

𝑠
2 

−  𝑠
1

𝑋
2

𝑠
2 

−  𝑠
1

is true for all . I am just using the fact that, condition on ; is an𝑠
2 

≥  𝑠
1
 ≥ 0 𝑆

1
𝑠

2 
−  𝑠

1

exponential; . That is all that I am using.𝑠
2 

−  𝑠
1
 𝑖𝑠 𝑋

2

So, what does that work out to be? That works out to be , because this cancels withλ2𝑒
−λ𝑠

2

. And this is true for . So, the joint density is,𝑒
−λ𝑠

1 𝑠
2 

≥  𝑠
1
 ≥ 0

𝑓
𝑆

1
, 𝑆

2

(𝑠
1,

𝑠
2
) = λ2𝑒

−λ𝑠
2 

Now, where is ? See, this should be a function of and , right? But it is𝑠
1

𝑓
𝑆

1
, 𝑆

2

(*  , *) 𝑠
1

𝑠
2

only a function of , which means it is? It is independent.𝑠
2



It is constant. It is constant in , except that, it means, the shows up in the constraint. So,𝑠
1

𝑠
1

; it clearly has to be, right? So, if you look at the two-dimensional plane, let us say𝑠
1

≤ 𝑠
2

this is , that is . The density is non-zero, only in the range . So, it is𝑠
2

𝑠
1

𝑠
2 

≥  𝑠
1
 ≥ 0

non-zero only here. Is that clear to everyone?

And as a function of , there is a dependency , but as a function of which is, I have𝑠
2 

𝑒
−λ𝑠

2 𝑠
1

drawn in the vertical axis, it is constant. So, if you pick any and you change , the𝑠
2 

𝑠
1 

density remains constant, the density is coming out of the plane of the board, if you like. So,

it is decaying in but constant in , and it is defined in this region which is below the𝑠
2 

𝑠
1

45-degree line. Now, you can do the same trick for . So, we can state this now.𝑠
1
,  𝑠

2
,... 𝑠

𝑛
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Proposition: Once you understand the case , the case for general is easy. The joint𝑛 =  2 𝑛

density is ,

𝑓
𝑆

1
, 𝑆

2
, .., 𝑆

𝑛

(𝑠
1
, 𝑠

2
,...  𝑠

𝑛
) =  λ𝑛𝑒

−λ𝑠
𝑛,  𝑠

𝑛
 ≥ 𝑠

𝑛−1
≥.  .  .  ≥ 𝑠

1

So, again, this joint density is explicitly a function only of , but𝑓
𝑆

1
, 𝑆

2
, .., 𝑆

𝑛

(𝑠
1
, 𝑠

2
,... 𝑠

𝑛
) 𝑠

𝑛

the other random variables occur in the constraints.𝑠
1
, 𝑠

2
,... 𝑠

𝑛−1



So, in an -dimensional space; of course, all of these are non-negative random variables; so,𝑛

you can; anyway looking at only the non-negative orthant. And in the non-negative orthant, it

exists only in a part of the orthant where the coordinate is bigger than𝑛𝑡ℎ (𝑛 − 1)𝑡ℎ

coordinate is bigger than the coordinate and so on; similar to the picture I drew(𝑛 − 2)𝑡ℎ

here, this picture right here, except in the -dimensions.𝑛

So, this is the joint density. How do you prove this? Yes. Proof is by induction. In particular,

for the case , you already proved. Make the base case. You already proved,𝑛 = 2 𝑛 = 2 

from first principles. Then you make an induction hypothesis saying that the joint density𝑘𝑡ℎ

is this, . Then you look at that joint density of . Then you write𝑓
𝑆

1
, 𝑆

2
, .., 𝑆

𝑘

(.) 𝑓
𝑆

1
, 𝑆

2
, .., 𝑆

𝑘+1

(.)

that in terms of the joint density of .𝑓
𝑆

1
, 𝑆

2
, .., 𝑆

𝑘

(.)𝑓
𝑆

𝑘+1
| 𝑆

1
, 𝑆

2
, .., 𝑆

𝑘

(.)

Of course, you have an induction hypothesis for the first term, which is the joint density of

the first . And then, of course, the conditional density, given the first , is simply another𝑘 𝑘

exponential. Then, the same trick works, induction will do the job. I think you can complete

this easily.
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The Distribution of . So, you are fixing some ; , of course, is a random variable.𝑁(𝑡) 𝑡 𝑁(𝑡)

You fix whatever you want and you are looking at the total number of𝑡 =  10,  𝑡 =  100,

arrivals until the time ; is of course a random variable; and you are looking at its𝑡

distribution. It is a non-negative integer value random variable. So, you are talking about the;

so, for non-negative random variable, integer value random variable, you have to talk about

the PMF.

So, you want to get the probability mass function of . So, you want this; want𝑁(𝑡)

. So, we can denote this by . This is a PMF, probability mass function𝑃(𝑁(𝑡) =  𝑛) 𝑝
𝑁(𝑡)

(𝑛)

of , for a fixed . Now, recall that there is this equivalence. Recall that the event𝑁(𝑡) 𝑡 > 0

. We know the distribution of is Erlang.{𝑁(𝑡) ≥ 𝑛} =  {𝑆
𝑛
 ≤ 𝑡} 𝑆

𝑛

So, , we can easily write out; it is simply the integral of the Erlang density. This is𝑃(𝑆
𝑛 

≤ 𝑡}

nothing but the Erlang CDF, if you take probability of this. So, you can look at the

is easy to get. That is really all there is to it. Since you know the distribution of𝑃(𝑁(𝑡) ≥ 𝑛}

, you can calculate the distribution of using this equivalence.𝑆
𝑛

𝑁(𝑡)

It is a mostly mechanical exercise, but you can do the following for example. So, you can

write; perhaps you can; this is, well, one way to do it. is what you want.𝑃(𝑁(𝑡) =  𝑛)

; is this correct? Maybe not. No, this is not correct. So, I want to𝑃(𝑁(𝑡) =  𝑛) =  𝑝
𝑁(𝑡)

(𝑛)

write; . If I write here, I will be okay, right? So, maybe I should write it𝑃(𝑁(𝑡) ≥ 𝑛) 𝑛 − 1

like this,

𝑃(𝑁(𝑡) =  𝑛) =  𝑃(𝑁(𝑡) ≥ 𝑛) −  𝑃(𝑁(𝑡) ≥ 𝑛 + 1)

I think you will agree if I write; Somewhere, anything wrong here? No, I changed; I mean, I

was off by 1, now I think I am okay. This is correct. So, but now, this is of course equal to

; Why? This is from the equivalence.𝑃(𝑆
𝑛 

≤ 𝑡) −  𝑃(𝑆
𝑛+1 

≤ 𝑡)

(Refer Slide Time: 18:58)



So, this, you can write as,

𝑃(𝑁(𝑡) =  𝑛) =  
0

𝑡

∫ λ𝑛τ𝑛−1𝑒−λτ

(𝑛−1)! 𝑑τ −
0

𝑡

∫ λ𝑛+1τ𝑛𝑒−λτ

𝑛! 𝑑τ

What have I done? So, I want to look at , which is the CDF of , which is the𝑃(𝑆
𝑛 

≤ 𝑡) 𝑆
𝑛

running integral from 0 to of the Erlang density. See, I am writing here, because I want the𝑡 τ

variable of integration to be different from what the limit is; that is why I put , if you areτ

wondering why. And similarly, I have done the same thing with replaced with . So,𝑛 𝑛 − 1

now you can fight it out. There is nothing more to it.

You will do this integral integration by patch, whatever; you people do this faster than I can

do, right? So, finally, you fight it out and you will get a nice answer. You will get, this is

equal to; this answer I know,

(because 0! =1)𝑃(𝑁(𝑡) =  𝑛) =  (λ𝑡)𝑛𝑒−λ𝑡

𝑛! ,  𝑛 =  0, 1, 2...

Actually, see, we have to, you will directly get this for onwards; , you have to𝑛 = 1 𝑛 = 0

do it separately, because this formula would not hold, because you will get and all(− 1)!

that; does not make sense.



So, for , . That we already know.𝑛 = 0 𝑃(𝑁(𝑡) = 0) = 𝑃(𝑋
1

> 𝑡)

; So, nevertheless you get that for{𝑁(𝑡) =  0} =  {𝑋
1

> 𝑡} 𝑃(𝑋
1

> 𝑡) =  𝑒−λ𝑡.  𝑁(𝑡) =  0

. For onwards, this calculation is valid. So, this calculation here is valid for𝑁(𝑡) =  1

... onwards. For , you have to do it separately, like I just spoke out.𝑁(𝑡) =  1,  2 𝑁(𝑡) =  0

But nevertheless, the formula here will be valid. If you take factorial, you will get it.𝑛 = 0 

So, this is worth putting in a box.

𝑝
𝑁(𝑡)

(𝑛) =  (λ𝑡)𝑛𝑒−λ𝑡

𝑛! ,  𝑛 =  0, 1, 2...

This is called the Poisson PMF. This is true for; so, n is equal to 0, 1, 2, et cetera. This is

called the Poisson PMF. It is Poisson PMF with parameter . So, for any t, is Poissonλ𝑡 𝑁(𝑡)

distributed with parameter .λ𝑡

So, we know that; what we did is, we know is Erlang distributed. So, using the𝑆
𝑛

equivalence between and which we already derived, we just got it, we just did some𝑆
𝑛

𝑁(𝑡)

algebraic manipulations and got it. So, nothing very greatly involved here; some big integrals

involved. Of course, the PMF of alone is not satisfactory. What do you actually want?𝑁(𝑡)

See, this is a sequence of random variables indexed by t. So, you want to characterise𝑁(𝑡)

all finite order joint distributions of , et cetera, just like . Here, for any𝑁(𝑡
1
) 𝑁(𝑡

2
) 𝑆

1
.  .  . 𝑆

𝑛

given , you want the joint PMF of , ,... . So, that is the next thing𝑡
1
,  𝑡

2
,  ... 𝑡

𝑘
𝑁(𝑡

1
) 𝑁(𝑡

2
) 𝑁(𝑡

𝑘
)

we will do. "Professor - student conversation starts" Yes? Sorry. I; so, in this? No. I mean;

see, this, whatever I have written down here, this expression out here is valid for 𝑛 ≥ 1.

So, all of this is true for; this guy is true for . So, I should really write; so, I can only𝑛 ≥ 1

write , because this expression is valid only for . I am sneaking the 0 in by𝑛 = 1, 2,.. 𝑛 ≥ 1

saying that you can make a separate argument for . That is all. "Professor -𝑁(𝑡) =  0

student conversation ends"
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Now, joint distribution; joint PMF. So, fix some and . So, you𝑘 > 0 0 < 𝑡
1

< 𝑡
2

<... < 𝑡
𝑘

want the joint PMF of , , et cetera. So, what is𝑁(𝑡
1
) 𝑁(𝑡

2
)

? Again, it is easy to do, I mean, you𝑃( 𝑁(𝑡
1
) =  𝑛

1
,  𝑁(𝑡

2
) =  𝑛

2
,.  .  .  .  ,  𝑁(𝑡

𝑘
) =  𝑛

𝑘
 )

will take this . So, what is the joint PMF ? So, you first𝑘 = 2 𝑃( 𝑁(𝑡
1
) =  𝑛

1
,  𝑁(𝑡

2
) =  𝑛

2
)

take , which is the simplest case. We want .𝑘 = 2 𝑃( 𝑁(𝑡
1
) =  𝑛

1
,  𝑁(𝑡

2
) =  𝑛

2
)

This can be written as ; this is by this𝑃(𝑁(𝑡
1
) =  𝑛

1
) .  𝑃( 𝑁(𝑡

2
) =  𝑛

2
 | 𝑁(𝑡

1
) =  𝑛

1
)

conditioning. Got it? So, it just comes down to; see, I already know.𝑃(𝑁(𝑡
1
) =  𝑛

1
)

. That is just the first term, which I already know.𝑃(𝑁
1
(𝑡) =  𝑛

1
) =  

(λ𝑡
1
)

𝑛
1𝑒

−λ𝑡
1

𝑛
1
!

Then, you are looking at what is ? Now, you have to use𝑃( 𝑁(𝑡
2
) =  𝑛

2
 | 𝑁(𝑡

1
) =  𝑛

1
)

some property of the Poisson process. So, if there are; so, there have been arrivals till ,𝑛
1

𝑡
1

you want another arrivals to come, in an interval of width . See, by the𝑛
2

−  𝑛
1

𝑡
2 

−  𝑡
1

stationary increment property, the number of arrivals in any interval is only a function of

width, which is in this case.𝑡
2 

−  𝑡
1



Also, given that there are arrivals till time , the number of arrivals in is𝑛
1

𝑡
1

(𝑡
1
,  𝑡

2
] 

independent of the number of arrivals in . Why? IIP, independent increment property.(0,  𝑡
1
]

So, you have to use both SIP and IIP to calculate this guy. So, let me write this,

𝑃( 𝑁(𝑡
2
) =  𝑛

2
 | 𝑁(𝑡

1
) =  𝑛

1
) =  

λ(𝑡
2 

− 𝑡
1
)

(𝑛
2
− 𝑛

1
)
𝑒

−λ(𝑡
2 

− 𝑡
1
)

(𝑛
2
 − 𝑛

1
)!

You want arrivals in that interval times over . This is𝑛
2

−  𝑛
1

𝑡
2 

−  𝑡
1

𝑒
−λ(𝑡

2
−𝑡

1
)

(𝑛
2 

−  𝑛
1
)!

of course true for . And this, for this particular term, to get this term, I have used𝑛
2

≥ 𝑛
1

≥ 0

SIP and IIP. So, to just give you a picture; this is 0, this is , that is . So, you had some𝑡
1

𝑡
2

𝑛
1

arrivals here. So, given that you had arrivals in , you want to have another further𝑛
1

(0,  𝑡
1
]

arrivals here.𝑛
2

−  𝑛
1

Of course, by the stationary increment property, the number of arrivals in has the(𝑡
1
,  𝑡

2
]

same distribution as the number of arrivals in . And what is more; given that(0,  𝑡
2

− 𝑡
1
]

there are arrivals in , the number of arrivals in is independent of this number𝑛
1

(0,  𝑡
1
] (𝑡

1
,  𝑡

2
]

of arrivals that have already taken place. So, I am using both these things together to write

this. So, similarly for I can write down; the same trick works.𝑘
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I hope I do not make any mistakes. Let me write this down.𝑃(𝑁(𝑡
1
) =  𝑛

1
,  𝑁(𝑡

2
) =  𝑛

2
,.  .  .  .  ,  𝑁(𝑡

𝑘
) =  𝑛

𝑘
)

 =  
(λ𝑡

1
) 𝑛

1𝑒
−λ𝑡

1

𝑛
1
!

𝑖=2

𝑘

∏
(λ(𝑡

𝑖
−𝑡

𝑖−1
))

𝑛
𝑖
−𝑛

𝑖−1𝑒
−λ(𝑡

𝑖
−𝑡

𝑖−1
)

(𝑛
𝑖
−𝑛

𝑖−1
)!

Is that correct? Because you can do this repeated conditioning. In particular, you can use

induction; you can use the previous result as a base case; make this induction hypothesis for 𝑘

and prove it for . This expression is basically, you do this multiple times; whatever I𝑘 + 1

did before for 2, you do this multiple times.

And I hope there are no off by 1 errors here; looks correct. So, that is the joint distribution of

these. So, given any and , you can calculate the joint distribution of𝑘 𝑡
1
,  𝑡

2
,  ...  𝑡

𝑘
𝑁(𝑡

1
)

through using IIP and SIP.𝑁(𝑡
𝑘
)


