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Welcome back, last lecture we discussed tandem queues using reversibility arguments. So, 

we considered just to give you a recap, you considered a queue in which there is a poisson 

lambda arrivals on the server of rate mu 1 and the customers that leave queue 1 immediately 

enter another queue with an exponential server of some rate mu 2. So, this is the tandem 

system we studied. 

 

We know that the departure process if you look at the departure process getting out of the 

first queue is independent of the present state of the first queue; this is something from 

Burke's theorem. So, what happens is that these 2 queues at any given time t they end up 

having independent states. So, if X t is the number of customers in this queue at time t and Y 

t is the number of customers in this queue. 

 

Then X t and Y t turned out to be independent for any t and in steady state we said that you 

will have probability I mean for a very large t or either you start in steady state or wait for a 

very large amount of time, so you will have probability X t = m, Y t = n just products out 



into, so this of course is true for all t, X t = m, times probability Y t = n. So, this is of course 

always true for any t. 

 

And this is true in steady state, you will have the first one being M/M/1 and the second one 

being in M/M/1, you have 1 - rho 1, rho 1 to the m 1 - rho 2 rho 2 to the m. So, at any given 

time t these 2 tandem queues behave as though there are independent M/M/1 queues. Of 

course the queues are not independent. In fact if you look at X t for some t and Y tau for 

some other tau they are not independent, they will not be independent in general. It is not at 

all the case that the process X t is independent of the process Y t. 

 

That is not what we are saying, but the random variable X t for a fixed t is independent of the 

random variable Y t for that t. That is what we are saying in this tandem queues and we also 

argued that if you have FCFS the time spent in the first queue and the time spent in the 

second queue by a customer are independent. So, that the total time spent in the system can 

be added up as independent random variables. 

 

And that is because of part C of Burke's theorem. We argued all of this in the last lecture. 

Then we also had an example where some fractions of customers are sent back into the 

queue. It is like a feedback system, in that case what happened is that the arrival process into 

the queue was not poisson but the entire system could still be seen as an M/M/1 with a 

service rate mu times queue where queue is the probability of leaving the system. So, these 

are things that we saw in the previous lecture. 

 

Now this kind of networks where you have either tandem queues or some fraction of 

customers going back into one of the queues you could have 3 or 4 queues where from queue 

3 you could go with some probability to the second queue and the output of second queue 

could either leave the system or go back to the first queue. All sorts of these things are 

possible and these kind of with exponential service rates and poisson arrivals. So, these kinds 

of networks are known as Jackson networks and that is the topic of today's discussion. 
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So, what is a Jackson network? It is just a generalization of tandem queues and this feedback 

queues. So, you have some k nodes, so I am going to say the k nodes of the Jackson network, 

there are k nodes each with an exponential server X mu I, i = 1, 2, dot, dot, dot k. So, the ith 

node has a server which serves with service times exponential mu i. There is also a notional 

node 0 which is a notional exogenous node. 

 

So, node 0 is external to the system, it is better to not think of node 0 as one of the nodes in 

the system, you can think of it as something outside from which exogenous traffic comes into 

the Jackson network and once service is completed the traffic that leaves all these queues 

goes back into node 0. You can view it that way. So, the picture is as follows. So, you have 

some let us say that is node 1, so maybe I should draw squares. 

 

So, that you do not look at it as some CTMC or some such. So, there is a node 1, that is a 

node 2, let us say there is a node 3 and so on. So, what happens is there is some node 0 

outside which you can view as exogenous node. So, traffic comes to each of these nodes from 

the external node with some rate. So, let us call this rates exogenous arrival rates as r 1, r 2, r 

3 etcetera. 

 

So, there is traffic coming out of this exogenous node, of some rate lambda 0 and so this r 1, r 

2, r 3 they are all poisson processors, their poisson processes of rates r 1, r 2 and r 3 they are 

independent poisson processors. Now since we are looking at a notional node 0 from which 

all the traffic is coming you can split you can do a Bernoulli split with probability Q 0 1, Q 0 

2, Q 0 3 let us say. 



 

And you can say r 1 is equal to lambda 0 Q 0 1 and then that goes here and likewise the split 

traffic of node 2 goes here, the traffic of node 2 goes here. So, that is how the exogenous, 

exogenous means arising from outside this network. So, this exogenous traffic comes in at 

this poisson rates r 1, r 2, r 3 which are simply lambda 0 Q 0 1, lambda 0 Q 0 2, lambda 0 Q 0 

3. 

 

And there is exponential mu 1s over here, the exponential mu 2’s over here, exponential mu 

3’s over here. And upon completing service let us say I am a customer who arrived first at 

node 1; upon completing service at node 1 with probability let me draw it in a slightly 

different with probability Q 1 2 I go to node 2 and probability Q 1 3 I go to node 3 and 

probability Q 1 1 I look back to node 1. 

 

So, this is like looking back to the same node is like what we studied in the previous class 

where some fraction of traffic just went right back into the same queue and with some 

probability let us say Q 1 0 it goes back, Q 1 0 it leaves the network. So, I am going to say 

that it goes back to node 0 which is both my origin and sync of all traffic; this node 0 is just 

notional. 

 

You can just think of it as leaving the network completely. Likewise if I arrived from the 

exogenous node to this mu 2 server then I can go after completing service for exponential mu 

2 amount of time I can go to Q 2, this is Q 2 1, I can go here with probability Q 2 3, Q 2 2 

and so on, likewise for node 3, I can do the same thing for node 3 or go back to node 0. So, 

this Q 2 0, just got back to node 0 Q 3 0 node goes back to node 0, with some probability I go 

back to where I came from I just leave the network. 

 

So, this is how Jackson network works. So, this picture may look quite messy but really the 

concept is very simple, you have exogenous traffic of different rates if you do not want to 

think of this r 1, r 2, r 3 as coming from the same process lambda 0 and then split that is 

perfectly. You can just think of r 1, r 2, r 3 as being rates of independent position processors 

coming at exogenously to these nodes. 

 

After completing service with some probability Q ij I go from node i to node j. On probability 

q i 0 I leave the network, it is as simple as that. So, this picture may look unnecessarily 



complicated but it is really not that complicated. And so you have this whenever I am in node 

I the successive choices of going to some other node j this probability Q ij and these choices 

are independent across successive service completions at node i. 

 

We also assume that the routing is instantaneous, so there is when I leave node i and go to 

node j the moment I depart node i I have already entered node j, these are all assumptions that 

we are going to make. So, this is called a Jackson network. Now if you look at this system we 

want to find out how the system operates. In fact what we can see is that the system 

corresponds to a Markov chain. So, we are going to put a state of the system at some any time 

t I am not going to make time t explicit. 

 

So, I am going to call it some vector let us say m 1, m 2 dot, dot, m k which corresponds to 

the, so m i is the number of customers in node i. This is my state of the system and we are 

going to argue that the state of the system m which is simply the vector of the number of 

customers in each node evolves according to a CTMC. And see that is easy enough to see 

because you have the exogenous arrivals are poisson and then you are splitting the departures 

in iid fashion. 
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Let me now say how the transition rates work let us talk about q m, m prime. These are 

transition rates from m to m prime. So, you have 2 different states m and m prime which 

correspond to the number of customers in each queue and what are the transition rates? Now 

what you can easily show is that if so what are the 3 things that can happen, there are only 3 

possibilities. 



 

So, let us say the system is in some state m, m 1 through m k and so what is possible here. 

Remember that you cannot have simultaneous arrivals or departures, so we are going to 

ignore that. So, they could be the first thing that could happen is an arrival to some state. So, 

if there is an arrival to an ith node this the ith entry m i alone will increase by 1. That is 

possibility number 1. 

 

The possibility number 2 is that some packet, some customer in some node j complete service 

and leaves the system in which case m j the jth entry will reduce by 1. The third possibility is 

that somebody completes service in some node j and goes to node I, in which case the state 

will go from the jth entry will reduce by 1 and the ith entries will increase by 1. These are the 

only transitions that are possible. 

 

So, if you look at if you just define ei to be the vector of 0s except there is a 1 at the ith 

position, otherwise all 0s. Then you can write down the transition rates as follows. You can 

write q m, m prime as, so let us look at the arrival first, let us say there is an arrival in an 

exogenous arrival to some node j. So, that will happen with rate lambda 0 Q 0 j which is 

simply your r j. 

 

This is the rate of the transition whenever m prime is m + ej. So, so you can go from m to m 

prime or m to m plus ej at this rate or you can leave, you can have mu i at node i you can 

have a service, so which happens at that rate for m prime = m – ei. So, this is true only for m i 

greater than 0. I mean you can have a departure only if there is somebody there has to be a 

non-empty the node i has to be non-empty for this to happen, whereas the first one can 

happen in any case. 

 

So, this is true for it can happen in any of the k nodes that even can happen in any of the k 

nodes, the second transition which corresponds to an exogenous departure happens when you 

have somebody in service at least 1 person in service and third possible transition is that you 

have a departure from one of the nodes immediately joining some other node. That is also 

possible. So, that happens with probability mu i Q ij. 

 

So, I complete service in node i but I do not leave the system I instead go to some other node 

j. This happens at rate for this case m - ei I leave node i but then I end up going to node j. 



This is for m i greater than 0 and for this is also for 1 less than or equal to i less than or equal 

to k. So, these are the possible transitions of the CTMC. So, what are we saying the Jackson 

network described above the state m which is the vector of the number of customers at any 

given at some time is evolves according to a CTMC whose transition rates are given like this. 

 

You go from a state vector m to a state vector m prime at these rates and there are only 3 

possible transitions that are possible. All other q m m primes are 0. So, maybe I should write 

that also, maybe I should just erase this and say equal to 0 otherwise. No there is no other 

state transition. These are the only possible transitions. Now for this kind of a process I want 

to determine. 

 

So, these are the transition rates, so what are what are the things that are of interest to me? I 

want to determine the steady state behaviour that is the main goal of this exercise. I want to 

find out p m, p of m where m is some state vector. What is the probability that my state 

vector is m? Now the issue is this system reversible? The answer is that the system is not 

reversible. 

 

So, even if you look at this very simple system which this you know this tandem queues I 

should have probably mentioned this in the previous lecture itself. Even this tandem queue 

system is not really reversible see we are making heavy use of reversibility arguments and 

Burke's theorem for the first queue to infer something about the process in the second queue 

and concluding certain independence and M/M/1 property and all that. 

 

But if you look at the process X t, Y t even in this tandem queue the process X t, Y t 

considered as a vector, of course this is a very simple Jackson network, it is not a reversible 

CTMC at all. If you look at X t, Y t as a state vector because you can have a transition that 

corresponds to a decrease in X t and an increase in Y t; whenever there is a customer going 

from one queue to the other but the reverse transition is not possible, you do not have any 

customers going from Y t to X t. 

 

So, the network is not reversible. So, I mean it is pretty clear that the more general Jackson 

network that we have put down here this messy network cannot be reversible. So, the Jackson 

network running in forward time and in reverse time will not look statistically identical at all. 

But we can still use some guesswork theorem to conclude what its steady state properties 



look like. So, the key issue is that although the Jackson network is not reversible if you run 

the time in reverse the hypothesis is that the time reverse system is another Jackson network. 

 

It is not reversible in the sense that it is statistically different from the network we have put 

down but the reverse system will be a different Jackson network. And as it happens we are 

able to guess the reverse transition rates of the reverse Jackson network we hypothesize that 

the reverse network is a reverse Jackson network with a different set of rates. We are able to 

do some guesswork and guess those reverse transition rates and from there we are able to 

infer some steady state probability using the guesswork theorem that we studied before. 


