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Now I want to briefly discuss the issue of tandem queues. Tandem queues means you are 

putting one queue after another. So, here is a queue, so which has poisson arrivals at rate 

lambda and they are being served at exponential mu and the output. So, whenever these 

customers get out of the first queue they get into another queue which is another exponential 

server of rate mu 2 some other rate. 

 

So, we are going to assume that lambda less than mu 1 and lambda less than mu 2. Mu 1 and 

mu 2 one of them can be bigger or smaller I do not care, but both mu 1 and mu 2 should be 

greater than lambda. This is well motivated in practice because often when you go to renew 

your passport or whatever you have to first go to one queue where they take your documents 

and you then get out of the queue get into another queue to actually apply for the passport or 

renewal of the passport or to renew your driver's license or whatever it is this kind of tandem 

queues are quite common as we know from practical experience. 

 

So, here we assume that any customer who gets out of the first queue instantaneously goes to 

the second queue. There is no time delay in the intermediate, the moment a customer or a 



packet gets out of the first queue he or she finds himself in the same for herself in the second 

queue. And both queues are exponential servers of rates mu 1 and mu 2 respectively. We are 

going to assume that see the first is an M/M/1 queue, this is an M/M/1 queue. 

 

So, the first queue is an exponential server and the service times are independent of arrival 

times and the second queue there is no delay and no delay between queues, between them. 

So, a customer who leaves the first queue instantaneously joins the second queue. 
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Now we are also going to assume that so this is number 1, this is the second assumption, no 

delay between the queues, third assumption is service times at the second queue are 

independent of arrivals and service times at the first queue. So, the second queue is an iid 

exponential server, maybe I should say that also iid exponential mu 2 and are independent of 

arrivals and service time in the first queue. 

 

o, if I am a customer I had some service time in the first queue and I get to the second queue 

my service time in the second queue is statistically independent of my service time in the first 

queue, all my arrival time in the first. So, these are assumptions that I am going to make. So, 

what happens in this case this system turns out to be fairly easy to analyze and that is because 

of Burke's theorem. 

 

Now notice that the departure process of the first queue the first queue being an M/M/1 queue 

that departure process is also poisson of rate lambda, horizon of rate lambda. So, we are 

getting poisson inputs to the second queue and the second queue also has exponential service 



rates. So, you may directly conclude that it is an M/M/1 queue but we are not there yet 

because you have to argue that the service times in the second queue are independent of the 

arrival times in this process in the arrival process to it. 

 

Now we know that any given time t, so we have to argue that there is no correlation between 

the service times in the second queue and the arrival process to the second queue. Now we 

know that at any given time t the departure process is independent of the state of the system 

of the first queue and therefore you can argue that the arrival process here at any given time t 

is independent of anything that happened in this system. Also by assumption the service time 

here is independent of the service times here. 

 

So, we can argue that the arrival process is independent of the service time in the second 

queue. So, you can argue that the second queue is a M/M/1 queue in a legitimate way. So, we 

are going to say now that so let us say X t is the number of customers in first queue and Y t is 

the number of customers in second queue at time t. So, we know that X t at time t is 

independent of departures from first queue prior to t. 

 

So, X t is independent of departures from first queue prior to t, this is because of Burke’s. 

Therefore X t is independent of arrivals to the second queue before time t. X t is independent 

of arrivals because the departures from queue 1 prior to time t are in fact the arrivals to say 

queue 2 the second queue prior to time t. Depend of arrivals to second queue prior to t, 

because there is no we are not wasting any time waiting in between. 

 

Now Y t, this is true for any t. Now Y t depends only on arrivals prior to t and services 

completed prior to t. So, Y t, the number of customers in the second queue at any time t will 

depend on the arrivals that happened before t and all the services that happened before t. We 

have already argued that the arrivals prior to t which are the departures prior to t from X t, so 

Y of t is dependent only on arrivals prior to t which are independent of X t. 

 

And services prior to t the service times prior to t which are also independent of X t. Because 

X t the service times in the second queue are independent of the service times and arrival 

times in the first queue. So, both arrivals prior to t and the services completed prior to t are 

independent of X t and Y t depends on only these 2 things. So, you can argue that X t and Y t 

are independent random variables for any t. 



 

So, we have argued 2 things; first that the second queue is also an M/M/1 queue because you 

have passions arrivals and exponential services. And the second queue the service times are 

independent of the arrival times because the arrival times only depend on the service times 

and arrival times the first queue and which are independent of service times in the second 

queue. 

 

So, we have argued that the second queue is also M/M/1 and we have argued that X t and Y t 

the state of the 2 systems are in fact independent. So, we can easily argue that I mean let us 

also assume that we have maybe we can assume FCFS if you want things to be even simpler. 

So, you have seen what is now X t and Y t are independent random variables. So, you can 

argue that probably that X t = m and Y t = n, you can write as P x t = m times P y t = n. This 

is because of independence at any given time. 
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And probability X t = m is nothing but 1 - rho 1, rho 1 to the m and probability Y t = n Y 1 - 

rho 2 rho 2 to the n where mu 1 and rho 2 is equal to lambda over mu 2, both are assumed to 

be less than 1. So, it is easy to find the joint distribution of X t and Y t at any given time, it is 

just a product of the usual M/M/1 distributions. Next list if you assume so this so far 

everything we have said is valid in full generality, we have not assumed any FCFS. 

 

Now if you assume FCFS in both queues now you consider a customer who departing queue 

1 at time t. Now the arrival time of this customer and therefore the total system the time spent 

by this customer in queue 1 is independent of departures prior to t. So, the total time spent by 



this customer is independent of departures prior to t this is because of again Burke’s theorem 

part c this is. 

 

Now we are using FCFS and part c of Burke’s theorem. So, we are saying that total time 

spent by the customer who departs at time t departs queue 1 at time t is independent of 

departures prior to t and this departures prior to t are in fact the arrivals into the second 

queuing system. So, the time spent by this customer in the second queuing system will be 

independent of the time spent by this customer in the first queuing system. 

 

This implies time spent by the by this customer in the second queue is independent of time 

spent by the same customer in the first queue. So, if you want to look at the total time spent 

by the customer in the first queue plus the second queue it will be a sum of 2 independent 

random variables only for FCFS. So, if you have FCFS the customer who departs the first 

queue at time t the system time in queue 1 alone is independent of departures prior to t. 

 

But the departures prior to the customer joins the second queue will determine his waiting 

time in the second queue, but we know from Burke’s theorem part c that the departures prior 

to t are independent of the customers total time in the first queue. So, the time spent by the 

customer in the first queue is independent of the time that the customer will spend in the 

second queue. So, the total time spent by the customer in queue 1 plus queue 2 will be a sum 

of 2 independent random variables. 

 

That is what this part is saying using Burke’s theorem part c. We already know that the time 

spent by a customer in an M/M/1 queue is an exponentially distributed random variable with 

parameter mu – lambda. So, what happens is the when the customer enters the first queue she 

spends exponential amount of time with parameter mu 1 - lambda and then goes to the second 

queue and spends an independent exponential time with parameter mu 2 - lambda and then 

leaves the system. 

 

And then if you want you can add one more queue, you can add a third tandem queue and all 

these arguments will repeat. So, if you have a whole bunch of tandem queues with 

exponential service times you can make 2 important conclusions. The one is that maybe 3 

important conclusions, all of them behave like independent M/M/1 queues. 

 



In the sense that at any given time t the joint distribution will be like a product of the 

corresponding M/M/1 queue's distributions of course the queuing processes are not 

independent, because you can argue that if X t if there are never any customers in the first 

queues of course there would not be any customers in the second queue, it is not as so these 

tandem queues are like independent M/M/1 queues that is not what I am saying. 

 

I am saying that at any given time t the distribution products out. So, we can say this even for 

3 tandem queues or 4 tandem queues or whatever you want and in the FCFS case the total 

time spent by a customer in the first queue and then the second queue are independent and 

you can add them up as independent random variables to get the total time spent in the 

system and that is because of Burke’s theorem part c. So, this is quite powerful. See there is 

one caution I want to give you that it is crucial. 
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So, this independent service times in 2 queues is very crucial, service times of each customer 

in different queues is very crucial. So, what we are saying is that if I spend a certain amount 

of time in queue 1 and certain amount of time in queue 2 I am assuming that these 2 random 

variables are independent. If this is not the case then all of what we are saying will actually 

break down. 

 

Let me show you one example where the service times are not independent I am going to 

show you a slightly extreme kind of an example where let us say they have 2 queues I have 

poisson arrivals of rate lambda; this is exponential service of rate mu. I have another queue 

also of rate mu mu 1 = mu 2 let us say. Now what I am going to say is that so in this case 



well so far I have assumed that if I am a packet of some size here and I get served here for 

some time I take an independent avatar so to speak in the second queue. 

 

So, what I mean by independent service time is that a packet or a customer in the first queue 

takes a certain amount of time and a second queue takes a certain different amount of time 

which is independent of the first. So, I do not retain an identity of the amount of service. So, 

for example this could be justified if you are verifying documents in one counter and going to 

the next counter to renew your passport or whatever this assumption could maybe it is 

justified. 

 

But in a communication network this is not at all justified because I do not take different 

avatars I mean it is the same packet after this customer me is not a person going to a passport 

office let us say I am a communication packet I am like a packet of a certain size then I am 

not going to take different avatars. So, a packet which is small here will continue to be small 

here, let us say a certain amount of bits and a packet which is fat will continue to be fat. 

 

So, this is an extreme case where the identity the amount of service time from one queue to 

another it is not only not independent I am actually maintaining it to be the same. In this kind 

of a scenario you cannot argue that Burke's theorem holds, Burke's theorem does not hold at 

all and in fact the second queue will not be M/M/1. First queue is M/M/1 of course. So, 

where do things break down?  

 

So, the output process of this is still poison, because the output of an M/M/1 queue is always 

poison and the second queue is of course an exponential server, but I am arguing that in the 

case when these packets retain their sizes or identities or their service times the second queue 

is not an M/M/1 queue and you cannot use Burke's theorem. Now why is that the case that is 

because there will be heavy correlation between the arrival process here and the size of the 

packet that is coming in. In this case let me write this down. 
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In the above case where the packets I am now calling the customers as packets because I am 

saying they have a particular size. So, the service times in the 2 nodes; here the 2 routers or 

whatever they are not independent; they are in fact the same. Well the packets retain the same 

size in the 2 queues cannot be analyzed using Burke's theorem. Why is that indeed the second 

queue is not M/M/1, and you know why? 

 

See the arrival process is poisson, the arrival process to the second queue is poisson and the 

service times are exponential, but the arrival times is not independent of the size of the packet 

that is coming, see this is an important assumption in the M/M/1 queue. In an M/M/1 queue 

what do we assume the arrival processes are poisson and the service time of each customer is 

independent of the arrival process is what we assume in an M/M/1 queue and that is not true 

here? 

 

You know why because see just think of what happens, let us say I have some big packet, this 

is a big packet, let us say this is my time and this is a big packet. He gets served in the first 

queue, so this guy over here is getting served whenever he is getting slowly served, so when 

slowly this job is being eaten away by the first server there will be a lot of other smaller jobs 

that would keep coming at rate lambda. 

 

So, when the first job is getting served there will be a lot of smaller jobs that would come to 

the first queue, let me typically smaller job. So, when you have an atypically large job that is 

sitting at the first queue there will be a lot of small jobs that come. So, whenever the big file 



finishes service at the first queue and gets to the second queue it will be immediately 

followed by a number of small packets. 

 

So, what does that mean? When I see a big packet I can imagine that there will be number of 

arrivals after that in succession in that for the second queue. So, what we are saying is that 

there is no I mean if you look at the size of the arrival process to the second queue still 

poisson, but if I look at the file if I see a big file I know that there will be a lot more smaller 

files that come after that. 

 

That is because they have been waiting behind this big file. So, this is somewhat like I did not 

make this very precise, it is somewhat like if you have a big truck moving on a small road 

there will be a number of cars behind it. This is like a slow truck effect, because all these cars 

have just come and started waiting behind the truck because the truck is moving very slowly 

something like that happens out here, you can simulate this and see if you wish and it was not 

very, very mathematically precise but this is exactly what happens. 

 

So, there is a correlation between the sizes of the files and their arrival times that is what 

happens in the second queue. So, although the arrival process is poisson it is not an M/M/1 

queue that is because it is a correlation between the sizes of the files and the arrival process. 

So, in fact this kind of a tandem queue cannot be analyzed under works and may not be easily 

analyzed at because there is such a strong correlation between the file sizes in the arrival 

process. So, this is not an easy process to analyze. 

 

So, this is a word of caution that this Burke’s theorem should be used very carefully, it 

crucially depends on the service times in the 2 queues being independent random variables. 

Another word of caution is that if you have cycles this sort of breaks down. Let us say so if 

you have tandem queues where one queues output is feeding the other the service time in the 

second output is independent of the first and the second output is feeding the third one where 

again there is independence across service times then you can use Burke's theorem tandem 

queues analysis; then you will have independence of the state and all that. 

 

But the moment you start feeding back, so feed forward is perfectly. If you have feedback, so 

if the output of one queue feeds back into its own input or another queues input then you will 

have trouble, let me show you. Let us say feedback, let us say I have this queue, so I have an 



arrival process of poisson rate lambda; they enter the system and they get served and then I 

split what do I do? 

 

I split a fraction of 1 - q and q with probability q a served customer departs the system and 

with probability 1 - q a served customer instantaneously joins the q. So, I complete service, I 

toss a coin independently across other, so this q can be thought of as a coin toss. So, moment 

I finish service I toss a coin if it turns out like with probability q I leave with probably 1 - q I 

instantaneously joined back the q. 

 

And this q this coin toss process is independent of everything else, independent of the arrival 

process, service process and it is independent across customers and so on. So, in this system 

it is a little bit problematic, this is not really an M/M/1 queue. Why if you look at this let us 

say if mu is much, much bigger than lambda and let us say q is much, much smaller than 1. 

Then what happens is that let us say the system is empty, a customer would come lambda is 

much smaller than mu, so mu is very fast. 

 

So, it would get served but it is very high probability that the customer will come back and 

again get served and come back, again get served and come back and after maybe let us say if 

q is 0.01 then I would come back about 99 times and 100 time I would leave. So, the timeline 

would come like a customer comes very well 99 times he comes back and goes. And after a 

very long time a new exogenous arrival will come, again the same thing sort of thing will 

happen. 

 

So, if you look at the process here is poisson that is what we know is poisson. But the process 

here is not poison, it would be very bursty. So, the process that is actually entering the queue 

is not at all poisson because it will have a number of repeated entries and then nobody the 

number of repeated entries and nobody and so on. So, it is not a poison input to the queue at 

all in this scenario, but if you can there is a way to analyze this kind of a system; let us say 

you put it inside a box like so. 

 

Now if you look at the Markov chain corresponding to the number of customers inside this 

box this 1 - q the customer joining back it is like a self transition and will not be seen as a 

change in the state of the system at all. So, the Markov chain for the number of customers 



inside the box will still look like it is a Birth-Death chain except the rate at which this will be 

like mu q. 

 

Assuming that mu q is less than 1 and this can be made into a positive recurrent chain, let us 

assume that mu q is less than 1; mu is very large compared to lambda and q is very small but 

mu q is less than 1 and so on dot, dot, dot. So, the state of the system inside this box still 

behaves like it is an M/M/1 queue with parameter lambda over mu q as the rho factor. So, if 

you look at X t as the number of customers in the system it will still satisfy 1 - rho times rho 

to the i where rho is equal to lambda over mu q. 

 

Although the queue itself forget the box now, if you look at the queue itself it's not at all an 

M/M/1 queue it has burst arrivals because the same guy keeps coming back, but nevertheless 

it is a Markov process that we can very well understand as a Birth-Death chain and you can 

solve for its occupancy probability. So, that is just I mean it is an interesting system to 

consider. 

 

So, anyway so you can think of this now that we have studied tandem queues where you feed 

forward and you can consider them as not as independent M/M/1 queues but any given time 

they behave like they are independent M/M/1 queues and then you have these queues with 

feedback. So, you could potentially even take with probability P i take the output of q 1 and 

send it to q 3 with probability some other probability I send you to q 4 and bla, bla, bla. 

 

I can make a big network of queues like this there are some exogenous inputs, some 

departures which leave the system for good but some departures get routed from one queue to 

another queue with some probability and so on. These kind of systems can be studied they are 

known as Jackson networks and that will be the topic of our discussion in the next module. 

So, I will stop here, thank you. 


