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Welcome back. Good morning. Yesterday we introduced a Poisson process. We said that if

you have a counting process, you can think about the counting process in terms of 𝑁(𝑡)

which is the number of arrivals up to and including time or you can look at it in terms of the𝑡

arrival epochs ’s or the inter-arrival times 's. If these inter-arrival times are independent𝑆
𝑖

𝑋
𝑖

𝑋
𝑖

and identically distributed, you say that the process is a renewal process. The counting

process is a renewal process.

Now, a Poisson process is a very special renewal process in which these 's are IID𝑋
𝑖

exponentially distributed with some parameter λ. And, we also introduced this memoryless

property of the exponential random variable. So, in some sense, this exponential distribution

forgets what happened in the past, which is why this Poisson process is very special.

We will formalise this in this lecture by proving, in what sense this memoryless property

actually holds. So, in this lecture, we will prove this memoryless property in a very, in a more

precise sense. We will also discuss, we will also basically prove that the increments in a



Poisson process are stationary and independent. At this point, these terms may not make

sense to you, but we will define what these mean. So, this is where we are heading.

(Refer Slide Time: 02:02)

So, let me state a theorem. Consider a Poisson process of rate λ and fix any . The𝑡 > 0

length of the time interval from until the first arrival after is a non-negative random𝑡 𝑡

variable Z with CDF for Further, Z is independent of all arrival𝐹
𝑍
(𝑧) =  1 −  𝑒−λ𝑧 𝑧 ≥ 0.

epochs before and independent of the set of random variables𝑡 {𝑁(τ), τ ≤ 𝑡}.

This is a slightly long statement, but it is not, it is certainly not difficult to understand. So,

what you are doing is, you consider a Poisson process of rate and you fix any . So, you areλ 𝑡

looking at As far as you are concerned, your observation starts at . So, a Poisson process𝑡. 𝑡

has been running and you show up at some , and you are looking at when does the next𝑡

arrival after come?𝑡

Now, this is something fixed; it is not random. is something fixed. And you are looking at𝑡 𝑡

the next arrival to come after . And, from until the next arrival, this interval is denoted by𝑡 𝑡 𝑍

. It is some random variable; it is some non-negative random variable. What this theorem is

saying is that this time to the subsequent arrival after is exponentially distributed with𝑡

parameter .λ



It is the same as an inter-arrival distribution, same as the original inter-arrival distribution.

And furthermore, is independent of everything that happened in the past. It is independent𝑍

of how many arrivals came so far, it is independent of when those arrivals came, until, at time

, some arrivals would have already come. And the time to the subsequent arrival after you𝑡

show up at , is independent of how many arrivals came and when they came.𝑡

That is what this theorem is saying. So, it is like, buses are going at a bus stop according to

some Poisson process; you show up at some particular time. The time that you wait for the

next bus will still be an exponential random variable, and it will be independent of how many

buses came in the past and when they came. If the bus arrival process is a Poisson process,

which it is usually not. Clear? Statement is clear?

So, just to show it in pictures. So, that is your time axis. So, this is 0. Some arrivals have

shown up. So, this guy is ; this guy is and so on. These are inter-arrival times. You are𝑋
1

𝑋
2

picking some time . The arrival after this, comes here. And the that is of interest is this𝑡 𝑍

guy. So, you are showing up at time , and you are looking at the time to the next arrival.𝑡

What this theorem is saying is that is exponentially distributed with parameter . And is𝑍 λ 𝑍

independent of the arrival epochs of all these previous guys, and also the number of those

arrivals. So, it is independent of everything that happened in the past; that is what this

theorem is saying.
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Now, let us prove this. So, we will first start with; so, let us say, let be such that .𝑡 𝑁(𝑡) =  0

This is case 1. We will consider two different cases, and . So, we will𝑁(𝑡) =  0 𝑁(𝑡) >  0

look at the following. So, you look at; let us draw; I will just draw a picture to make this

clear. This is 0, time = 0. Your time is here. No arrivals have come so far, .𝑡 𝑡 𝑁(𝑡) =  0

Your first arrival comes somewhere here.

That is the case we are considering. And that is your at this point. Now, we are looking at;𝑍

let us consider the . Now, you recall the following. We showed𝑃(𝑍 >  𝑧 | 𝑁(𝑡) =  0)

yesterday that the event is same as the event . This we showed{𝑆
𝑛 

≤ 𝑡} {𝑁(𝑡) ≥ 𝑛}

yesterday. Did I write it down correctly? So, now, this is the same as saying that the event

; I am just taking complement; is the same as the event ; just taking{𝑆
𝑛
 >  𝑡} {𝑁(𝑡) <  𝑛}

complements.

A = B; . So, from here, you can see that ; so, in particular, you can write that the𝐴𝑐 =  𝐵𝑐 𝑁(𝑡)

event , which is just equal to the event is same as the event that{𝑁(𝑡) <  1} {𝑁(𝑡) =  0}

. So, is same as the event , because takes only{𝑆
1

>  𝑡} {𝑁(𝑡) <  1} {𝑁(𝑡) =  0} 𝑁(𝑡) 

non-negative integer values. And is same as , from here. But is same{𝑁(𝑡) <  1} {𝑆
1

>  𝑡} 𝑆
1

as .𝑋
1



So, I can just write this guy as because, the event is same as𝑃(𝑍 > 𝑧 | 𝑋
1

> 𝑡) {𝑁(𝑡) =  0}

the event . So, it comes from that box, from the recall box. So, this is simply just{𝑋
1

>  𝑡}

equal to what? So, This is the same as . From the𝑍 =  𝑋
1

− 𝑡. 𝑃(𝑋
1
 >  𝑡 + 𝑧 | 𝑋

1
> 𝑡)

picture it is clear.

So, this guy is . So, what is ? This is exponentially distributed𝑋
1

𝑃( 𝑋
1

>  𝑡 + 𝑧 | 𝑋
1

> 𝑡) 𝑋
1

and we know that it follows the memoryless property. So, this is equal to This𝑃(𝑋
1

> 𝑧).

equality is due to memorylessness. And this is nothing but . So, for conditions on𝑒−λ𝑧

is exponentially distributed with parameter .{𝑁(𝑡) = 0}, 𝑍 λ

Now, we also have to look at . In both these cases, if this holds, then{𝑁(𝑡) =  𝑛,  𝑛 ≥  1}

the unconditional distribution of is exponential. That can be; that follows. So, let us𝑍

consider case 2.

(Refer Slide Time: 11:21)

Let us say some bigger number, . So, let us say; so, , as there have𝑁(𝑡) =  𝑛, 𝑛 ≥ 1 𝑁(𝑡)

been some arrivals. arrivals have already occurred at time . Now, let us say that𝑛 𝑛 𝑡

So, I have said that there are arrivals. The time at which the arrival𝑆
𝑛
 =  τ,  τ ≤ 𝑡. 𝑛 𝑛𝑡ℎ

occured, I am calling it . And this has to be before , less than or equal to . So, here𝑆
𝑛
 =  τ 𝑡 𝑡

the picture is as follows.



So, this is 0. Some arrivals occur here, some arrivals occur here, some arrivals occur here and

so on. So, you are looking at; this is ; this is . This is the time axis. I am looking at a𝑁(𝑡) 𝑡

particular ; so, this is time; this is a particular . In this case, with what I have drawn,𝑡 𝑡

, but does not have to be 2; it can be anything that is not 0. And of course, your𝑁(𝑡) = 2 𝑍

here is the time to the next arrival.

And this is , which is; this I am calling . See, all random variables are big . So, I think𝑆
2

τ 𝑍

my and are looking very similar. Maybe, if you can write the cursive z, maybe it is better.𝑍 𝑧 

See, always, random variables are big. So, what I want to put here is . So, this is . Now,𝑍 𝑍

you consider the following, .𝑃(𝑍 >  𝑧 | 𝑁(𝑡) =  𝑛,  𝑆
𝑛
 =  τ)

Now, we can argue similarly, that this is equal to the

That is because, this, what is this width?𝑃(𝑋
𝑛+1

> 𝑧 +  𝑡 −  τ | 𝑁(𝑡) =  𝑛,  𝑆
𝑛
 =  τ).

This is . So, this random variable will be bigger than z. So; this is the arrival; this𝑡 −  τ 𝑛𝑡ℎ

is the arrival. This inter-arrival time is nothing but So,𝑛 + 1𝑡ℎ 𝑋
𝑛+1

. 𝑋
𝑛+1

> 𝑧 +  𝑡 −  τ 

comes from the picture directly.

So, this guy, you wanted to be bigger than , so, . Obvious from the𝑧 𝑋
𝑛+1

> 𝑧 +  𝑡 −  τ 

figure. It is useful to draw these figures, just so that you do not make any mistakes. Now,

again you can argue this event. So, you are conditioning on and . So, the 𝑆
𝑛
 =  τ 𝑁(𝑡) =  𝑛

arrival arrived at some and the , which means that there have been no more𝑛𝑡ℎ τ 𝑁(𝑡) =  𝑛

arrivals.

You can again argue just like in the previous case, this just boils down to; This is the same;

, given , because there has not been any arrival since, and .𝑡 −  τ 𝑋
𝑛+1

>  𝑡 −  τ  𝑆
𝑛
 =  τ

Now, it is an important step. See, by the definition of a Poisson process, is independent𝑋
𝑛+1

of . Why is that? See, actually this is true for any renewal process.𝑆
𝑛

𝑆
𝑛

=  𝑋
1

+ 𝑋
2

+... + 𝑋
𝑛

. But through will be; they are all IID random variables.𝑋
1

𝑋
𝑛



So, through will be independent of . So, is independent of . So, this𝑋
1

𝑋
𝑛

𝑋
𝑛+1

𝑋
𝑛

𝑆
𝑛

conditioning can be dropped. So, since, is independent of . I am going to write this as;𝑆
𝑛

𝑋
𝑛+1

given . And this is equal to This is𝑋
𝑛+1

> 𝑧 +  𝑡 −  τ 𝑋
𝑛+1

>  𝑡 −  τ 𝑃(𝑋
𝑛+1

>  𝑧).

because are exponentials; are memoryless. Actually, you see that the conditional𝑋
𝑖
'𝑠 𝑋

𝑖
'𝑠 

distribution of given boils down to an unconditional distribution.𝑍 𝑆
𝑛
 =  τ

You can just drop this. So, you can see that is independent of . Likewise, if you were to𝑍 𝑆
𝑛

condition on , , and all that; all those conditionings will drop𝑆
𝑛
 =  τ  𝑆

𝑛−1
 =  τ' 𝑆

𝑛−2
 =  τ''

off because is after all independent of everything in the past by the definition of a𝑋
𝑛+1

Poisson process. So, this proof itself can be easily reworked to show that this is𝑍

independent of , all the previous arrival epochs.𝑆
𝑛

Also drops off; your condition also drops off. So, nothing would change if𝑁(𝑡) 𝑁(𝑡) =  𝑛

you were to condition on and previous something before to be and all𝑁(𝑡) =  𝑛 𝑁(𝑡'), 𝑡 𝑛' 

that, it will still drop off. You can rework all this, to prove.

"Professor - student conversation starts"

This guy? This one? This guy? So, . So, we are looking at some time t. We are𝑁(𝑡) =  𝑛

conditioning on , right?𝑁(𝑡) =  𝑛

And ; the previous arrival occurred at . So, the previous arrival occurred at , and𝑆
𝑛
 =  τ τ τ

, which means that there have been no further arrivals. So, this inter-arrival time𝑁(𝑡) =  𝑛

cannot be smaller than . So, what we are saying is that conditioning on is𝑡 −  τ 𝑁(𝑡) =  𝑛

same as conditioning on . These two events can be shown to be the same.𝑋
𝑛+1

>  𝑡 −  τ

This would imply this and this would imply that.

Similar to, I mean, you can argue like this if you want, in the recall box, right? I did it for the

case . We can argue similarly.𝑛 = 1

"Professor - student conversation ends"

So, hence, you are done proving that the time to the next arrival is exponentially distributed.

And this exponential random variable is independent of the number of arrivals that have



happened so far and the epochs of those arrivals. So, essentially, it is independent of

everything in the past. So, this Poisson process has this; at every instant of time, it

statistically regenerates. It is as though a new process is starting. Every instant , it is like a𝑡

new process starts. It forgets everything that happened in the past. So, there will be no way to

statistically tell the difference between; so, I start a Poisson process now, and I keep running

it. Somebody comes in at a particular time and starts watching the process. Statistically, there

is no way to tell the difference. So, that finishes the memoryless property, in this module.

Next module, we will discuss increments of a Poisson process.


