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Welcome back. From today we will start discussing continuous time markov chains, 

otherwise known as continuous time markov processes. So, what is a continuous time markov 

chain? So, far we have studied DTMC's discrete time markov chains. If you remember so for 

a discrete time markov chain X n, so the time index is n for a discrete time markov chain and 

as we know that it satisfies probability X n given X n – 1, X n - 2 etcetera is just probability 

of X n given X n – 1. 

 

For any values of the states in the past only the previous state matters. So, this is what a 

DTMC is. A CTMC or a continuous time markov chain or a continuous time markov process 

as it is sometimes called is something similar so it works in continuous time. So, I will 

broadly tell you what it is. So, X t its time is now continuous. Let us say t greater than or 

equal to 0. So, what is this characterised by? 

 

Before I give you a formal definition; so pictorially it is easy to tell you what it is. So, that is 

time 0 and this is continuous time. A CTMC is characterized by something known as an 

embedded markov chain. So, it is characterized by 2 things an embedded DTMC and 2 



exponentially distributed holding times in each state. So, CTMC is characterized by an 

embedded DTMC and an embedded markov chain and exponentially distributed holding 

times in each state. 

 

So, there is an underlying markov chain called the embedded markov chain which is evolving 

you can think of a discrete time in which the embedded markov chain is evolving, every time 

the markov chain enters a particular state, the embedded markov chain enters a particular 

state. The continuous time markov chain stays in that state for an exponential amount of time. 

And then after this exponential amount of time the underlying DTMC goes to a different state 

and so does the CTMC and again CTMC holds for an exponential amount of time depending 

on the state that the embedded DTMC goes to. 

 

So, let me just draw this out. Let us say that I start with X 0 = i then there will be a 

exponential holding time. Let me call this U 1. This will be exponentially distributed with a 

parameter nu i which depends on the state X 0 = i conditioned on X 0 = i, the holding time is 

some exponential random variable which is parameterized by some nu i, some positive 

number nu i. 

 

Then after this exponential amount of time the underlying DTMC goes to some other state, 

let us say X 1 = j. This state that this embedded DTMC transitions 2 is independent of the 

exponential random variable that just happened; it is independent of U 1. So, the DTMC 

transitions to let us say some state j with some probability P ij, the P ij’s are the transition 

probabilities of the embedded DTMC. Again you have another holding time, let us call this U 

2 and this U 2 will be exponential with parameter nu j which the parameter nu j depends on 

the state X 1 = j. 

 

And again the underlying markov chain will go to some state k with probability P kj, this 

exponential nu j is independent of the next state and so on. So this is how the CTMC 

proceeds. So, you have exponential holding times in each state with parameter dependent on 

what state the embedded markov chain is in and after that exponential is finished both the 

embedded markov chain and the CTMC move to some other state j with probability P ij. 
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So, this embedded markov chain so let us say is P ij is the transition probability over some 

countable state space s which we can by default take it as 0, 1, 2, 3 dot, dot, dot. So, we are 

looking at the embedded markov chain evolving on some state space which is we are taking it 

as 0, 1, 2, 3 dot, dot, dot and P ij’s are the transition probabilities. These are the transition 

probabilities over some quantum state space.  

 

Now I want to define this CTMC, CTMC X t the stochastic process mapping each non 

negative time to I can say s which is let us say 0, 1, 2 dot, dot, dot, such that X of t = X n for s 

n less than or equal to t less than s n + 1 s 0 equals 0 and s n I have to tell you what s n is. S n 

is the sum of these exponentials m = 1 to n and each U n given let us say X n – 1 = i is 

exponentially distributed parameter some nu i. Nu i depends on i obviously and maybe is a 

conditionally independent of all U n and X n for m not equals i. 

 

So, this is the definition, so let us revisit this. A CTMC is a stochastic process X t for each X t 

takes one of the values X n, where X n is the state of the embedded markov chain. So, just to 

draw this out in picture again. So, you have s 0 – 0, this is your after a certain U 1 amount of 

time, let us say this is s 1 and then after U 2 amount of time you have s 2 and so on. Now if 

you just look at this so let us say this is s n let us say that is s n + 1. 

 

So, each s n is equal to the sum of the first n u i's and each U i conditioned on the state X n - 

1 being equal to i. Let us say you are in some state i here, with the markov chain is in some 

state i here, the underlying markov chain embedded markov chain is in state i and that is your 

s n + 1 that is exponential with parameter nu i. And this exponential random variable is 



independent of the other U's and it is also independent of condition on X n = i if independent 

of the other X i's. That is what a CTMC is. Now we for the embedded DTMC I mentioned 

that it is evolve on the state space s. 
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We will assume that embedded DTMC has no self transitions that is pii = 0 for all i, we are 

making this assumption for the embedded markov chain. That is because if the embedded 

markov chain transition from i to itself in the continuous time process the X t remains in i and 

you do not even see a transition really. So, if you really want to see a transition in the 

continuous time process you want to enforce that the embedded DTMC actually goes to a 

different state. 

 

Now this is not a very restrictive assumption and you can actually prove that if you do have a 

self transition also you can just reduce it to a CTMC which does not have self transitions. By 

just redefining the nu is appropriately. So, this is not a very restrictive assumption. So, the 

nice thing about this is that if you have self transitions you do not see it in the continuous 

time process you cannot see it as a transition because the process continues to be in the state i 

and the other is that there is a nice equivalence. If you do not have say this self transitions 

there is a nice equivalence between specifying the exponentials U i and the P ij’s. 

 

And the sample parts of an embedded markov chain xn and the U i’s and the sample path of 

the X t process. There is a one to one relationship between the X t sample path of the CTMC 

and the X n sample path of the embedded markov chain and the U i’s. The X n’s and the U i’s 



together will specify X t and vice versa. That equivalence also follows if you make this 

assumption. This is not a restrictive assumption again. 

 

As I said if you do have P ii non zero you can tweak the nu i’s to make P ii 0 and the 

statistical properties of the process will remain the same. So, this is an assumption we will 

make going forward that the embedded DTMC does not have any self transitions. So, what 

can be shown is that due to the memory less property of exponential is the following property 

follows. You can easily show this, for any states i, j, any integer l and any times t greater than 

tau greater than t 1 greater than t 2 dot, dot, dot, greater than t l. 
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We will have probability X of t = j given X of tau = i, X of t m is equal to some X s m for m 

less than or equal to l. This will simply be equal to P X t - tau = j given X of 0 = i. So, what 

do we have here? So, this is a markov property in continuous time that is why this is called a 

continuous time markov process. 
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So, what this property is saying this you can easily show so that is time 0. I am looking at 

some times what are these, so I am looking at t l a whole bunch of times. So, let us say that is 

t 2 that is t 1, that is tau and that is t. These are all various points in time. I am looking at the 

probability that X t equals, so this is X t that is X tau and then you have a whole bunch of the 

process is in various states X of t 2 dot, dot, dot. 

 

We are looking at the probability that X t = j, given X tau = i and a whole bunch of values for 

these states. What we are saying is that only the most reason conditioning matters that is 

number 1. So, all the previous conditioning these guys can be thrown out, that is what we are 

saying it. So, conditioned on X tau all the previous values are irrelevant and that is not all, it 

is as though this is again because of the first property is the markov property. 

 

The second is that it is as though time just begins at tau, it is as though you are starting the 

process X 0 = i and you are looking at probability of X t - tau being equal to j, it is as though 

the process just started the zero time of the process is at tau and this is true for any times t tau 

t 1, t 2 etcetera and for any 2 states i and j. And this property follows from the property 

underlying markov property of the embedded markov chain and the memory less property of 

the exponential random variables. 

 

This you can easily show. Next I want to show a simple example let us say, so M/M/1 queue 

and the embedded markov chain. As you know an M/M/1 queue has a server with 

exponential mu and a poisson arrival process at rate lambda and the arrival process is 



independent of service times. We are assuming of course that lambda is less than mu, so that 

the arrival rate is less than the service rate, otherwise the queue will be overwhelmed. 

 

In this setting actually an M/M/1 queue is actually a continuous time markov process. And 

the embedded markov chain is just the number of customers in the system. So, the embedded 

markov chain can be thought of as the transitions from let say X n - 1 to X n in the embedded 

markov chain happens either upon an arrival or a departure. So, here the state space is again 

0, 1, 2 etcetera which is the number of customers in the system and let us look at what kind of 

transitions are possible? 

 

Let us look at P 01, this is the for the embedded markov chain transitions. So, this is for the 

embedded DTMC. P 01, see if you are in state 0 the only state you can go to next is 1, 

because from state 0 remember there are no self transitions in the embedded markov chain. 

So, the queue is in state 0 the only non trivial transition it can go to is 1. So, P 0 1 is 1, this is 

the embedded markov chain remembers, but if you look at P 10 for example, so there is 

already one customer in the system, what is the probability that the next transition the 

embedded markov chain which corresponds to the evolution of the number of customers in 

the system? 

 

So, you are looking at the probability that the system goes from having one customer to 

having no customers. This happens if the customer in service completes this service before 

the arrival of the next customer. Remember that the customer in service this one person who 

is in service has an exponential service time of rate mu and the incoming customers are up 

independent poison process of rate lambda. 

 

So, there is a competition between the service exponential which is mu exponential and this 

arrival exponential which is a lambda exponential. Of course these exponentials are 

independent. So, the probability that the service exponential wins is nothing but mu over mu 

+ lambda. This we already know from our first initial study of poisson processes, 

independent exponentials, racing exponentials if you know so and so on. 

 

Now if you look at what is P 12, you are looking at now there is 1 person in service instead of 

that person leaving first you are looking at the probability that in fact there is a new arrival 

before the service of the first customer completes. This is obviously lambda by lambda + mu, 



it is simply a 1 minus the probability that the serve is exponential wins which is the 

probability that the arrival exponential wins which is lambda over lambda + mu and so on. 

 

So, now you can P 32 and all is not very different, it is the same story mu over mu + lambda 

and so on. So, if you look at the DTMC which is embedded DTMC you get a structure like 

this, this is the embedded DTMC. So, from 0 you can only go to 1, because we are not 

allowing self transition. Please remember that transition from 0 to 0 is not counted, so the 

process remains in 0 and the only next distinct transition that can happen is the arrival of a 

new customer. 

 

So, this has probability 1, this is indeed discrete time and of course this probability is mu over 

mu + lambda, that probability is lambda over lambda + mu that is mu over mu + lambda and 

so on. So, this is the embedded DTMC for the M/M/1 queue and what are the nu i’s. So, these 

are the P ij’s and so what are the nu i’s? If you look at this nu, so if I am in state 0 nu 0 is 

simply lambda. 

 

Because if I am in state 0 I am waiting for a new customer to come in, so what is the amount 

of time I wait until a new customer comes in to an empty system? It is exponential with 

parameter lambda. So, the rate at which a transition out of state 0 is lambda. Now what is nu 

1? Nu 1 corresponds to the rate at which I transition out of state 1. So, how long do I say stay 

in state 1 is the question? 

 

So I stay in state 1 until either there is a new arrival in which case I go to state 2 or until the 

person in service completes a service. That is exponential with rate mu. Now so there are 2 

competing exponentials, so the total rate at which I get out of the state or the amount of time I 

spend in the state is exponential with parameter lambda + mu. In fact you can argue that nu i 

= lambda + mu for all i greater than or equal to 1. 

 

First state alone I am waiting for the lambda exponential to fire, waiting for an arrival. In all 

other states I am waiting for either an arrival or the service to complete. So, there are 2 

competing exponentials, so nu i is lambda + mu. So, I have completely for the CTMC 

corresponding to an M/M/1 queue, this is the embedded markov chain and these are the nu 

i’s. I hope this example is clear. 

 



Of course you can now solve for the embedded markov chains embedded DTMC's, steady 

state probability you can easily determine by writing out the balance equations. In fact if you 

look at this DTMC you can clearly see that this is a Birth-Death markov chain, the embedded 

DTMC is Birth-Death and you can actually just easily write down the local balance equations 

and figure out what the pi's are. 

 

In fact for the embedded DTMC you will have pi 0 = 1 - rho whole divided by 2 and pi n = 1 

- rho square over 2 rho to the n - 1 for n greater than or equal to 1, where rho is just the load 

on the system lambda over mu, which is assumed to be less than 1. This you can easily solve. 

Now what is this pi n represent? So, in the discrete time markov chain of course pi n is the 

steady state probability of being in state n of there being n customers in the system. 

 

But in the continuous time markov chain this pi n does not represent the probability of there 

being n customers in the M/M/1 queue. This pi i represent the number of transitions going 

into state n. This is not the fraction of time spent in state n, I want to make this very clear. See 

you have different news, different holding times in different states. So, this pi i is the steady 

state probability of the embedded markov chain which represents the fraction of transitions 

that take you to state n. 

 

And because these nu i’s are different, there are different holding times in different states 

these may not represent the fraction of time spent in state and in the continuous time process. 

Note pi i obtained let us say as above by solving the balance equations for the embedded 

DTMC represents the fraction of transitions into state i, maybe I should just say pi i like that, 

state i in the CTMC. 

 

See in the DTMC case the number of the fraction of transitions into a state is also is the 

fraction of time spent in that state in a DTMC. In a CTMC that is not true, the fraction of 

transitions that go to a state i is not the same as the fraction of time spent in the state i 

because some of these nu i‘s are different from the other nu i’s, nu j’s. So, you have to wait 

them appropriately to get the fraction of time spent in each state. So, we have not gone there 

yet. 

 

I am only talking about the pi i’s, if you solve the embedded DTMC steady state probabilities 

you get some pi i, some probability distribution over the states. What does this represent? It 



represents the fraction of transitions into state i, it does not represent the fraction of time 

spent by the CTMC in state i. So, of course in all this I am assuming that the embedded 

DTMC is irreducible and positive recurrence. 

 

So, that I can solve this pi p = pi and get some pi i’s and the pi s you also obtained are the 

fraction of transitions in the CTMC going into state i and it is not the fraction of time spent 

by the CTMC in state i. And what is the fraction of time spent by the CTMC in state i; we 

have to work out separately, that is an important topic, we will get to later. 


