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Welcome back. In this module we will discuss a time-sampled M/M/1 queue and we will 

discuss a very important theorem about the M/M/1 queue known as Burke's theorem. So, you 

already know what an M/M/1 queue is so you have a arrival process which is poisson of rate 

lambda, service is exponentially distributed, IID exponentially distributed across customers 

with some parameter mu. 

 

And this service process is independent of arrival process. So, this is what an M/M/1 queue 

is; there is one server. Now if you look at some small delta time interval delta you can look at 

the system evolving in the small time steps delta and that will lead us to a countable state 

markov chain as we will see. So, in each of these little intervals delta the probability of 

getting an arrival is lambda delta to o delta. 

 

That is because of the poisson process. So, in each of these small micro intervals you have 

probability lambda delta plus o delta of having an arrival and probability 1 - lambda delta o 

plus of having no arrival. Likewise the service process is also exponential it is a memory of 

this process. So, if there is a customer in service the probability that particular customer 



complete service in a particular interval lambda delta is mu delta or mu delta will be the o 

delta. 

 

So, this can be used to derive a markov chain like so, so I am going to denote the state of the 

queue by the number of customers in the system. So, there is no limit to how many customers 

there are in M/M/1 queue. When you are in state zero the queue is empty; you can have an 

arrival in this tiny little delta interval; you can have an arrival with probability lambda delta 

plus o delta and no arrival the probability 1 - lambda delta plus o delta. 

 

If you are in state 1 which means there is 1 customer 3 things can happen, you can have an 

arrival with probability lambda delta plus o delta, the customer in service can finish his or her 

service and leave with probability mu delta plus o delta or you can just stay put you can have 

neither which is with probability 1 - lambda delta - mu delta plus o delta. So, this is also mu 

delta plus o delta and so on. 

 

So, all the forward transition probabilities are lambda delta plus o delta the reverse transition 

probabilities are mu delta plus o delta. So, I am just assuming that delta is very small, so that 

mu delta is still a probability. So, this picture is valid as long as delta is less than 1 over 

lambda + mu. Otherwise this will not be probabilities; this will not make any sense. So, if I 

choose delta small enough this is a valid picture. 

 

So, this is basically a Birth-Death chain, if you are willing to neglect these o probabilities of 

having 2 arrivals. For example you can jump from 1 to 3, in a small interval probability o 

delta. The probability is not 0 but I am not drawing these transitions here because I am just 

neglecting them. So, I am neglecting o delta terms you can theoretically have 2 arrivals, but I 

am neglecting it. 

 

With that understanding this becomes a fairly good approximation of an M/M/1 queue and it 

is a very good approximation if delta is very small. So, with the approximation that delta is 

very small you get a Birth-Death chain. This is a Birth-Death chain. So, already know quite a 

bit about Birth-Death chains, we know that the markov chain is reversible. We also know 

what its steady state probability is stationary distribution is. 

 



So, we are going to assume that lambda is less than mu, under this regime when lambda is 

less than mu you will get positive recurrence. So, rho = lambda over mu. You know the 

forward transition probability divided by the reverse transition probability with this ratio I am 

taking to be rho which is less than 1. In this case from earlier calculations I know that pi 0 is 

simply 1 - rho and pi is simply 1 - rho times dou to the i; for i greater than or equal to 1. So, 

in this markov chain the stationary distribution corresponding to the i customers being 

present is simply 1 - rho times rho to i which is like a geometric distribution except it also 

takes the value 0. 

 

It is like a shifted geometric distribution and with this distribution you can calculate the 

expected number of customers and all that. And once you know the expected number of 

customers you can calculate expected waiting time using Little's law all of that we have 

studied before. So, this formula is useful. My main topic of discussion here is reversibility, 

this is a Birth-Death chain with this pi I know that Birth-Death chains are reversible. 
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So, the M/M/1 queue is reversible, I should really be saying the time sample markov chain of 

the M/M/1 queue is reversible, I am just asserting that the M/M/1 queue is reversible, in fact 

M/M/1 queue corresponds to a continuous time markov process which we will study later but 

the statement is correct as a continuous time process in fact the M/M/1 queue is reversible 

also. 

 

What really I am saying in this context is that the time sample M/M/1, markov chain is 

reversible. So, what does that mean? That means that if an M/M/1 queue is running in 



forward time and I tape the queue running and then I play the tape in reverse, I should not be 

able to distinguish the forward tape and the reverse tape. That is what reversibility means. 

 

So, suppose I have a box, there is some M/M/1 queue inside, I do not know that there is an 

M/M/1 queue inside, I do not know what is happening inside and all I do not know the only 

thing I see is that there is a arrival process coming at me at rate lambda. In forward time and 

then customers are leaving. So, when I play the tape in forward direction so there is a box, 

customers are coming and then customers are leaving. That is all that I will see. 

 

In reverse time what happens if I just play the time in reverse I do not know what is inside, all 

the departures from the queue will seem like they are arriving into the queue and all the 

arrivals in forward time will seem like departures out of the reverse queue, what we are 

saying is that if you do not look inside the box this process looks I mean if you just play the 

process of arrivals and departures you will not be able to tell whether the chain is running this 

way or time is running this way. 

 

So, it is the chain is same M/M/1 queue inside, this is just I am just reversing the tape, this is 

forward, this is reverse. So, these look like arrivals, reverse time. Now what am I saying the 

reverse process is indistinguishable from the forward process which means the arrivals here 

have to be poisson of rate lambda, because the reverse chain is also a M/M/1 queue. So, this 

looks like the arrival to the reverse process should also be a poisson process because the 

reverse process is an M/M/1 queue, the statistically indistinguishable. 

 

So, the arrival process to the reverse queue should be indistinguishable statistically from the 

arrival process to the forward queue. But the arrival process to the reverse queue is the same 

as the departure process from the forward queue, because you are seeing this departure 

process in forward time or in reverse time. So, the departure process from the forward queue 

looks like the arrival process to the reverse queue. 

 

The arrival process to the reverse queue has to be a poisson process because of reversibility. 

So, the departure process from the forward queue has to be a position process of rate lambda 

or it has to be Bernoulli lambda delta plus o delta. So, this is a very interesting finding I said 

this in a somewhat hand waving way but this can be formalized the departure process from a 

M/M/1 queue is a poisson process of rate lambda. 



 

This may be surprising to you, I mean the departure process has to be of rate lambda because 

all the customers that come have to leave but what is surprising is the departure process is not 

only a process of rate lambda it is a poisson process of rate lambda. This may be little 

confusing because you may think that the departures are happening at exponential mu, but 

departures happen at exponential mu when only when the customers are present. 

 

When the customers are not present there is no departures, but what we are saying is that the 

unconditional departure process is poison lambda from an M/M/1 queue. So, this is 

formalized in a theorem called Burke's theorem which I will just state given an M/M/1 queue 

time sampled DTMC at steady state with lambda less than mu Burke's theorem says 2 things 

the departure process is Bernoulli with probability of departure lambda delta to o delta every 

IID across time slot so this is in fact a poisson process. 

 

So, the reason I did not say is the poisson process directly is because I am looking at the time 

sampled chain. So, if I look at this time sample little delta intervals the departure process 

looks like a Bernoulli IID process with probability of departure equal to lambda delta with o 

delta which implies that the departure process in continuous time will be a poisson process. 
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And second which is also quite interesting; the state at any time n delta is independent of 

departures prior to handle that. So, let us say you are looking at some time n delta. What we 

are saying is that the number of customers the state of the system at time n delta is 

independent of past departures in the M/M/1 queue. This may seem a little surprising because 



you may think that you know if I just told you that in the last let us say a few slots I had a lot 

of departures. 

 

Let us say in the last few slots a lot of departures you may think that well the queue must be 

relatively empty. That is not true in an M/M/1 queue, past departures are independent of the 

current state in an M/M/1 queue and this is a consequence of our reversible of the M/M/1 

queue chain. In fact if you look at the forward chain; in the forward chain we want to prove 

that the state at current time is independent of past departures. 

 

But if you reverse the chain if you run it in reverse time so we want to show that the 

occupancy of the queue in the forward chain is independent of the number of departures in 

the past and the time of their departures. But if you look at the reverse chain past departures 

in the forward chain are nothing but future arrivals in the reverse chain, future arrivals for the 

reverse chain. 

 

So, the reverse chain is an M/M/1 queue. Future arrivals are independent of past arrivals and 

past services in an M/M/1 queue. So, the numbers of people in the queue in the reverse chain 

is only a function of past arrivals and past services. So, for the reverse queue future arrivals 

are independent of the current state, but in the reverse queue future arrivals are nothing but 

the past departures in the forward queue. 

 

So, at any time n delta the state of the forward queue is independent of the departures in the 

past. So, this seems like a very reasonable straightforward argument if you use reversibility 

and use the fact that the reverse process is also a legitimate M/M/1 queue. Proving these 

things directly is fairly hard, even proving that the departure process from an M/M/1 queue is 

a poisson process directly is not easy, it is quite hard. 

 

But using reversibility it becomes very natural; likewise proving that past departures and 

current state of the queue are independent in an M/M/1 queue is very direct using 

reversibility arguments. These 2 statements are given by this very important theorem called 

Burke's theorem, which is a consequence of reversibility, I stop here. 


