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We were discussing Wald's equality and we were doing this example about stop when you are

ahead. We have with probability or with probability𝑋
𝑖

=  + 1 𝑝 𝑋
𝑖

=  − 1 1 − 𝑝

respectively. And you stop . The first time you hit +1, you stop.𝐽 =  𝑚𝑖𝑛{𝑛:  𝑆
𝑛
 =  + 1}

And we said is equal to probability that you stop eventually. And we saidθ =  𝑃(𝐽 <  ∞)

theta satisfies either; we wrote out a quadratic equation, right?

We said if ; and if . This is where we were yesterday. So,θ =  1 𝑝 ≥  1
2 θ =  𝑝

1−𝑝 𝑝 <  1
2

if your probability of winning is at least half, then you are guaranteed to stop with probability

1. If your probability of winning is less than half, the probability that you eventually stop is

only , which is less than 1, for . Therefore, in this case, for , is a𝑝
1−𝑝  <  1 𝑝 <  1

2 𝑝 <  1
2 𝐽

defective stopping rule, because it can be infinite with positive probability.
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And similarly, you can calculate . You can write a recursive equation similar to as𝐸[𝐽] θ

follows: You can write, is equal to; so, J = 1 with probability ; because, if you get +1𝐸[𝐽] 𝑝

straightaway, you stop at J = 1. So, it is plus; if you go down; so, you have gone down𝑝 · 1

to -1, then what is the expected time to get from -1 to +1? It is the expected time to go from

-1 to 0 plus the expected time to go from 0 to 1; but these are both equal to .𝐸[𝐽]

Similar sort of an argument as . So, you have ; you go down once; it is already 1 stepθ 1 − 𝑝

that you are taking; 1 + + . So, this is for going from -1 to 0. This is for going from 0𝐸[𝐽] 𝐸[𝐽]

to +1. So, from this, you can get is equal to . This is for; if , of course,𝐸[𝐽] 1
2𝑝 − 1 𝑝 <  1

2

with positive probability. Therefore, will of course be .𝐽 =  ∞ 𝐸[𝐽] ∞

But if , you get this expression. So, bottom line is that for and𝑝 ≥  1
2 𝐸[𝐽] <  ∞ 𝑝 >  1

2

for . So, the case is particularly interesting. So, it is a𝐸[𝐽] =  ∞ 𝑝 =  1
2 𝑝 =  1

2

symmetric up and down walk, +1; -1. So, here, you are guaranteed to eventually hit +1, with

probability 1 you will stop; but the expected time for stopping is infinite. So, in this case,

Wald fails. In this case, Wald holds, Wald equality holds. Why? Wald's equality demands that

be finite. In fact, you can check, right? What is ?𝐸[𝐽] 𝑆
𝐽
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If you look at it, is always +1. So, . So, the question is, Wald says𝑆
𝐽

𝐸[𝑆
𝐽
] =  1

. If this were infinite; see, if , would be infinite;𝐸[𝑆
𝐽
] = 𝑋 · 𝐸[𝐽] 𝑝 =  1

2 𝐸[𝐽] =  ∞

wou; . What is ? . So, , as we𝑋 =  0 𝐸[𝑆
𝐽
] =  1 𝑋 𝑋  =  2𝑝 −  1 𝐸[𝐽] =  1

2𝑝 − 1

calculated. So, it works. So, holds for .𝑝 >  1
2

, you will have a problem; you will have , which is an absurd𝑝 =  1
2 1 =  0 · ∞

statement. So, ; so, even if J is a legitimate stopping rule, if your is infinite,𝐸[𝐽] =  ∞ 𝐸[𝐽]

you cannot apply Wald; is finite, you can apply Wald. So, shall we go ahead and prove𝐸[𝐽]

Wald's equality?  The proof has a couple of subtleties. So, I will point out what happens.

There are a couple of points where you have to be very careful. You first write this;

, because; so, you are basically; J is the stopping time. So, you are𝑆
𝐽
 =  

𝑛 = 1

∞

∑ 𝑋
𝑛 

𝐼
{𝐽 ≥𝑛}

summing all those ’s which less than or equal to the stopping time, which is what is.𝑋
𝑖

𝑆
𝐽

Now, you want to calculate , which is nothing but ; so, I have𝐸[𝑆
𝐽
] 𝐸[𝑆

𝐽
] = 𝐸[

𝑛 = 1

∞

∑ 𝑋
𝑛 

𝐼
{𝐽 ≥𝑛}

]

just taken what is; I have taken expectation on both sides.𝑆
𝐽



Now, comes the first subtle point where I want to take the expectation inside the sum; but the

issue is that this is what kind of a sum? Infinite sum. So, you cannot always take a

expectation inside an infinite sum. See, you can do it if the summands are non-negative, by

monotone convergence theorem; but that may not be here; summands may not be

non-negative, ’s could be negative, like in the previous example. So, you cannot just take it𝑋
𝑛 

in.
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So, I will eventually show that this works. I will write . This is justified. So, 
𝑛 = 1

∞

∑ 𝐸[𝑋
𝑛 

𝐼
{𝐽 ≥𝑛}

]

let me call this ; justified when . I will justify this later. Just take it for now; we(*) 𝐸[𝐽] <  ∞

will get back to this and prove that this is justified. So, next claim is that is(*) 𝑋
𝑛

independent of , . Why is this true? Basically, it is the stopping rule condition.𝐼
{𝐽 ≥𝑛}

∀𝑛 ≥ 1

You take the event which is simply . So, is{𝐽 <  𝑛} {𝐽 <  𝑛} =  ∪
𝑖 = 1

𝑛−1{𝐽 =  𝑖} {𝐽 <  𝑛}

an event that I stop before , strictly before , which is the event that I stop at 1 or stop or 2 or𝑛 𝑛

stop at . Now, the event, each of these , the event that I stop at i, let us say,𝑛 − 1 {𝐽 =  𝑖}

stop at or is independent of . Why? Stopping rule. So, each of this{𝐽 =  2} {𝐽 =  𝑛 − 1} 𝑋
𝑛

is independent of , since is a stopping rule.𝑋
𝑛

𝐽



So, the event that I stop strictly before can have only to do with .through .; it has to𝑛 𝑋
1

𝑋
𝑛−1

be independent of . Now, so, this is the slightly mind-bending sort of a thing. So, you agree𝑋
𝑛

that the event is independent of ; I think that is intuitive. But what is the{𝐽 <  𝑛} 𝑋
𝑛

complement of the event ? . So, if an event is independent of; yeah,{𝐽 <  𝑛} {𝐽 ≥  𝑛} 𝐴 𝐴

compliment is also independent of . This we know from basic probability.𝑋
𝑛

So, this implies which is simply the complement of , is independent of .{𝐽 ≥  𝑛} {𝐽 <  𝑛} 𝑋
𝑛

This is true for all . So, this makes sense, except that if you think about it, this is a𝑛 ≥ 1

little bit of a confusing thing. See, is basically what? or or{𝐽 ≥  𝑛} {𝐽 =  𝑛} {𝐽 =  𝑛 +  1}

in general. See, the event is certainly not independent of . In fact,{𝐽 =  𝑛 +  𝑖} {𝐽 =  𝑛} 𝑋
𝑛

has a lot to do with .{𝐽 =  𝑛} 𝑋
𝑛

Usually, whether you stop at or not will depend a lot on . Similarly, the event𝑛 𝑋
𝑛

or does depend on . So, then, how is it that is{𝐽 =  𝑛 +  1} {𝐽 =  𝑛 +  2} 𝑋
𝑛

{𝐽 ≥  𝑛}

independent of ? See, means or or and𝑋
𝑛

{𝐽 ≥  𝑛} {𝐽 =  𝑛 } {𝐽 =  𝑛 +  1} {𝐽 =  𝑛 +  2}

so on. So, none of these events are independent of , but it turns out that is𝑋
𝑛

{𝐽 ≥  𝑛}

independent of .𝑋
𝑛

So, this is actually correct; there is nothing crazy going on here. The event or{𝐽 =  𝑛 }

; so, where you stop, or beyond, depends on , but whether is greater{𝐽 =  𝑛 +  1} 𝑛 𝑋
𝑛

𝐽

than or equal to is independent of . So, it is much easier when you go to , and𝑛 𝑋
𝑛

{𝐽 <  𝑛}

then take compliments; then it makes perfect sense; but if you try to argue directly, you seem

to think, you cannot easily argue it.

So, but what I have written is clear, the event of stopping strictly before is independent of𝑛

. So, is independent of ; therefore, is independent of . So, that is𝑋
𝑛

{𝐽 <  𝑛} 𝑋
𝑛

{𝐽 ≥  𝑛} 𝑋
𝑛



great. So, then, what can I do here? So, the event ; so, the is an independent{𝐽 ≥  𝑛} 𝐼
{𝐽 ≥𝑛}

random variable from . And, independent random variables are always uncorrelated.𝑋
𝑛

So, can be written as . So, this just becomes ; so, this𝐸[𝑋𝑌] 𝐸[𝑋] · 𝐸[𝑌]
𝑛 = 1

∞

∑ 𝐸[𝑋
𝑛 

]𝐸[𝐼
{𝐽 ≥𝑛}

]

is because of the claim. Now, what is the expectation of ? ; it is the common𝑋
𝑛

𝐸[𝑋
𝑛
] =  𝑋 𝑋

, that comes out. What is the ?𝐸[𝐼
{𝐽 ≥𝑛}

]

Expectation of indicator is probability. So, that is . And what is this? This is the𝑃(𝐽 ≥ 𝑛)

integral of the CCDF for this non-negative random variable. So, this just becomes integer

value random variable, right? So, this is just . So, you are done, except that; so, what is𝐸[𝐽]

the only thing that you have not proven here? The star, the justification for taking the limit

inside. So, if these things do not cause you sleeplessness, you can just take it as true; but if it

does make you sleepless, we will justify it. Ideally, it should make you sleepless.
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So, we have proved Wald's equality, except for this justification for the step star above, which

basically involves pushing an expectation inside an infinite summation. Now, pushing an

expectation inside an infinite summation is not always justified, we need to impose some

technical conditions under which this holds. And we have to basically prove that, under the



assumptions of Wald's equality, the pushing in of the expectation inside the infinite sum is

justified.

So, let us do that. So, the basic question which we are looking at is the following: When can

we push an expectation inside an infinite summation? Of course, for a finite summation, you

can always push the expectation in, because the expectation is linear, is always𝐸[𝑋 + 𝑌]

; and this is true even for a sum of random variables; but you cannot always𝐸[𝑋] +  𝐸[𝑌] 𝑛

push an expectation inside an infinite sum.

So, essentially, the question we are asking is this: When is it justified to say that; let us say, 𝑌
𝑖

’s are some random variables; when can I say that the ? When is this𝐸[
𝑖 = 𝑞

∞

∑ 𝑌
𝑖
] =  

𝑖 = 1

∞

∑ 𝐸[𝑌
𝑖
]

justified? So, this holds; this is not always true, but it holds under 2 prominent sufficient

conditions. The (i) condition is that, if for each . then you can push the𝑌
𝑖
 ≥ 0 𝑖 ∈ 𝑁

expectation inside the infinite sum.

The other sufficient condition is, if , then we can still say that you can push
𝑖 = 1

∞

∑ 𝐸[|𝑌
𝑖
|] <  ∞

the expectation inside the infinite sum. So, this holds under this or this; you do not need both.

If either 1 holds or 2 holds, then you can push the expectation inside the infinite sum. The

condition 1 is a consequence of the Monotone Convergence Theorem, and the sufficient

condition 2 is a consequence of the Dominated Convergence Theorem.

You can try and prove this as an exercise. I have given you the hint on what major result you

have to use. So, we are going to use this sufficient condition to justify the pushing in of the

expectation in the here. So, let us justify this equation .(*) (*)
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Before that, so, let me remind you of the Wald's assumptions. So, the Wald's assumptions are

that is a stopping rule for . We have assumed also that . And we𝐽 {𝑋
𝑖
,  𝑖 ≥ 1} 𝐸[𝐽] <  ∞

have assumed that is some common mean . You need a finite mean for these𝐸[𝑋
𝑖
] 𝑋 <  ∞ 𝑋

𝑖

’s. This basically implies that .𝐸[|𝑋
𝑖
|] <  ∞

So, we will use these to prove that condition 2 as written out here, holds for the sum . So,𝑆
𝐽

recall that whose expectation we want is just , which can be written as𝑆
𝐽

𝑆
𝐽
 =  

𝑛 = 1

𝐽

∑ 𝑋
𝑛

. This we have already seen. So, the question is, can I take the𝑆
𝐽
 =  

𝑛 = 1

∞

∑ 𝑋
𝑛
𝐼

{𝐽 ≥ 𝑛}

expectation inside this infinite summation?
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And one sufficient condition is 2, which is to look at, consider this sum, consider

. This is my expectation of absolute . Of course, the absolute value of an
𝑛 = 1

∞

∑ 𝐸[|𝑋
𝑛
𝐼

{𝐽 ≥ 𝑛}
|] 𝑌

𝑖

indicator is just the indicator itself; so, this is just .
𝑛 = 1

∞

∑ 𝐸[|𝑋
𝑛
|𝐼

{𝐽 ≥ 𝑛}
]

And by the stopping rule property, I already know that absolute is independent of .|𝑋
𝑛
| 𝐼

{𝐽 ≥ 𝑛}

We proved earlier that is independent of ; by the same argument, you can prove𝑋
𝑛

{𝐽 ≥  𝑛}

that is independent of . So, this is equal to|𝑋
𝑛
| 𝐼

{𝐽 ≥ 𝑛}
𝑛 = 1

∞

∑ 𝐸[|𝑋
𝑛
|]𝑃(𝐽 ≥ 𝑛)

So, this will become , which is just . So, now, this is𝐸[|𝑋
𝑛
|] · 𝐸[𝐼

{𝐽 ≥ 𝑛}
] 𝑃(𝐽 ≥ 𝑛) 𝐸[|𝑋

𝑛
|]

assumed to be finite, right? I am going to assume that this is some finite common number. Let

us say this is , which is some finite thing. So, this becomes𝐸[|𝑋|] (
𝑛 = 1

∞

∑ 𝑃(𝐽 ≥ 𝑛))𝐸[|𝑋|],

And this is nothing but . Now, we have assumed that both and𝐸[𝐽] · 𝐸[|𝑋|] <  ∞ 𝐸[|𝑋|]

are finite, so that this product is finite. So, this implies that 2 is satisfied, the condition 2𝐸[𝐽]

which I said; if you ensure this condition 2, then you can push the expectation into the infinite

sum.



So, since we have proved that for , you can push the summation in. Thus, as we did in ;𝑆
𝐽

(*)

that is justified. So, that basically completes the justification. And therefore, the proof of

Wald's equality is complete. Now, I want to make a few remarks. See, we have assumed the

statement of Wald's equality; we have assumed the ’s to be IID random variables, and to𝑋
𝑖

𝐽

be a stopping rule for these random variables; but nowhere in this proof is the independence

actually used.

So, ’s could be dependent, that is the first thing to note. So, the proof and the result𝑋
𝑖

continue to hold as though, even for dependent random variables. Further, we have also

assumed identically distributed random variables, which is again not needed. What we need

is a common mean which is finite. So, ’s could even have different distributions; but as𝑋 𝑋
𝑖

long as for each of these ’s have a common and , both be finite values, then𝑋
𝑖

𝐸[𝑋] 𝐸[|𝑋|]

this continues to hold.

So, maybe I should say so. The result continues to hold even for dependent ’s. Further ’s𝑋
𝑖

𝑋
𝑖

could have different distributions. The result holds as long as is some common value𝐸[𝑋
𝑖
]

, and . So, nowhere have we used independence, and even𝑋 <  ∞,  ∀𝑖 𝐸[|𝑋
𝑖
|] =  η <  ∞

identically distributed is not needed.

And if you look at this proof even more closely, the key step was that bit, that equality, where

we used the stopping rule property, where we showed that the event is independent{𝐽 ≥ 𝑛}

of due to the stopping rule property. Actually, we have just used the uncorrelatedness of𝑋
𝑛

with . Of course, uncorrelatedness follows from independence, which follows from𝑋
𝑛

𝐼
{𝐽 ≥ 𝑛}

stopping rule property; but really what you need is uncorrelatedness for each between𝑛 𝑋
𝑛

and .𝐼
{𝐽 ≥ 𝑛}

So, that is as general as you can get. In fact, there are statements of Wald's equality even

when the ’s do not have a common mean . You can make a more general statement which𝑋
𝑖

𝑋



is a little bit more messy. In fact, Wikipedia has a more general statement of Wald's equality.

But, we can just stop with this particular version of Wald's equality, with just the

understanding that although we have stated it for IID random variables, you do not need

independence, you do not even need identical distribution, but you do need to be finite𝐸[𝐽]

and ’s should be some common value which is finite. That is all that is needed. So,𝐸[𝑋
𝑖
] 𝑋

that concludes the proof of Wald's equality.


