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Wald's equality: So, it relates; so, let S n is equal to sum over i equals 1 to n X i. So, these are 

my sum total winnings until time n, where n is something deterministic. Wald's equality says, 

what is your expected winning at your stopping time? So, you have decided to stop at some 

point as a stopping rule. So, J is the stopping rule. What is your expected total winning? So, 

sum of X 1 + X 2 + ... till X J.  

 

J is where you decided to stop, but this J is now a function of, it is potentially a function of all 

these X, the X's you have seen. It is not a function of what is going to come. So, you stopped 

based on some stopping rule. What is the expected amount of winnings you have? This, it 

relates to your X bar which is the average of X, expected value of X and the expected value 

of the stopping time, stopping rule.  

 

So, it says something very non-surprising, which says that it is equal to expected J times X 

bar. And so, I should say this properly, right? Let me call this some star. Theorem: So, this is 

for IID random variables, X i. So, this star is called Wald’s equality. Let X n be a sequence of 



IID random variables with finite mean X bar. If J is a stopping time for X n with expectation 

of J finite, then Wald's equality is satisfied; which means that this guy holds.  

 

So, Wald's equality is star; star is satisfied. So, the key conditions are that J should be a 

stopping rule for these X n's. And this is very important; we will see; expected J should be 

finite. So, not only am I saying that you should stop with probability 1; well, if you do not 

even stop with probability 1, it is not even a stopping rule, it is a defective stopping rule. So, 

in addition to being a legitimate stopping rule, meaning that you stop with probability 1; so, J 

is finite with probability 1; in addition to that, you need expected J to be finite.  

 

If the expected J is infinite, Wald's equality may not hold; it is a necessary for this theorem to 

hold. So, I hope you know that a random variable could be finite with probability 1, and the 

expected value still could be infinite. That is not allowed here. We are asking for more than J 

just being a legitimate stopping rule. This is what the statement is, okay? We will prove this 

of course. I just want to remark that; this sort of a thing, you have already seen when this J; 

see, if the number of terms you are summing is a random variable, some n which is 

independent of the X i's, then expected S n is equal to expected n times expected X.  

 

This you have already seen in basic probability. That you already know. You can just take 

iterated expectations and prove it. Here, this is a; a similar thing holds also for stopping rules. 

What is the issue here? That n or here what we call J is not independent of the X n's; is 

dependent on the X n's, but it is dependent in a stopping rule fashion. So, essentially, it says 

that, if you have a stopping rule, your expected winning is simply, you are not really beating 

the system.  

 

You are just saying that it is, your average winning in each play times the expected number 

of plays. That is all this is saying. X bar is your average winning in each play; expected J is 

the number of plays; so, that is your total expected winning. That is what this is saying. So, 

this would not be true for example, if you say that, I am going to stop based on whether my 

next few returns are going to be bad or going to be good.  

 

Then you can gain more or lose more depending on what you do. Then, this kind of a 

relationship will not be true. So, before we prove Wald's equality, let me give you one 

example.  
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Let us say that you have a biased coin tossing or a biased random walk. So, X i = +1 with 

probability p, and -1 with probability 1 - p; and you are looking at, the stopping rule is this, 

stop when S J equals +1 for the first time. So, here is a gambler who could win with 

probability p, 1 rupee, or lose with probability 1 - p, 1 rupee. And the first time he gains a 

rupee, he is happy. He will stop the first time he gains a rupee.  

 

So, he could stop in the first trial itself. If X 1 turns out to be +1, he will happily go back. 

And if S 1 turns out to be -1, then I hope that I will build up to 0 and then go to +1, and then I 

will stop. So, this is the stopping rule. Moment I am ahead; so, this is called stop when ahead. 

"Professor - student conversation starts" Good question. So, the question is, is this even a 

legitimate stopping rule? Well, it satisfies the stopping rule condition that you do not look 

ahead, right?  

 

You look at all your X i's; if the sum of your X i's so far is +1, the first time you get to +1, 

you stop. So, you are not looking ahead. That much is clear. But is it finite with probability 

1? That is not clear. It could be defective. So, this stopping rule could be potentially 

defective. So, expectation of what will be finite? Expectation of S J may be finite. See, S J is 

+1, right? Whenever you stop, S J is +1. I do not know that, right?  

 

It is not, right? J is not, it is not so simple. See, you are not waiting for the first success. See, 

the question is saying that, is J simply your geometric random variable where you are waiting 

for the first +1? I am not waiting for the first +1, I am waiting for my first gain of 1 rupee. 



See, there is no use if I lose 2 rupees and gain a rupee; I do not stop. I should be ahead by 1 

rupee. I start with 0, let us say; I do not have any money. The moment I gain 1 rupee I leave.  

 

I can borrow, let us say; I do not have any money. If I lose money, I lose money; it is not like 

you are actually paying. So, it is not a geometric random variable, not at all. So, it is much 

more complicated. "Professor - student conversation ends" So, you can look at this, you 

can easily analyse this using a Markov chain, but we have not done Markov chains. So, we 

will use a trick, we will use some recursive trick here.  

 

So, let me actually; first let me argue this out more intuitively. See, I stop if my first X i is 1; 

I win 1 rupee, I am out. So, if theta is the probability that we stop eventually; I guess, so, then 

theta is simply the probability that J is finite. So, if theta is equal to 1, it is a stopping rule. If 

theta is something less than 1, it is not a stopping rule, it is a defective stopping rule. So, let 

me argue this out. It will turn out that; we will see how this theta behaves. This theta is the 

probability that we stop eventually.  
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So, using the total probability rule, I can write, the probability that I stop eventually as the 

probability that I stop in the first trial itself. So, what is the probability that I stop in the first 

trial, given that I got +1? The probability that I stop in the first trial given that I got +1 is 1, 

times the probability of getting a +1. So, that will be p, plus probably that I stop eventually, 

given that I got -1 times probability that I got -1; which is simply; got it.  

 



So, theta is a probability that I stop eventually. So, I am splitting this into 2 disjoint event. I 

stop; so, X 1 has to be +1 or -1. Given that this X 1 is 1, I stop eventually. If X 1 is -1, what is 

the probability that I stop eventually? I write like this. So, it is like this, right? So, you can 

look at this as a random walk. So, if this is 0; if I hit +1, I stop; finished. So, this has 

probability p.  

 

If I get a -1 with probability 1 - p, then I have to, from -1, I have to eventually find my way to 

+1. See, I do not have to go; I can go like that or I can do a lot of things now. So, basically, I 

have to go eventually from -1 to 0, and then go from 0 to 1. So, -1 to 0, I may not go like this, 

I may do; right; then, I may go like that. All these are possible. Once I get to 0, again I have 

to get to +1.  

 

See, but the key issue here is, because these X i's are IID, the probability of going eventually 

from -1 to 0 is the same as eventually going from 0 to 1. See, if you eventually go like this 

from -1 to 0, those exact sample paths will also go from 0 to 1, if you start at 1. And once you 

reach 0, again you have to eventually get to 1. So, my point is that, whatever happens here 

and whatever happens here, are basically statistically identical.  

 

Going from -1 to 0 and 0 to 1 are statistically identical, because of the IID nature of these 

random variables. So, bottom line is that, probability that you stop eventually given you 

ended up negative, is like going from -1 to 0 and then going from 0 to 1. And the probability 

of that; so, what is the probability of eventually going from 0 to 1? It is the original 

probability, right? It is theta. Probability of eventually going from 0 to 1 is theta.  

 

So, similarly, the probability of eventually going from -1 to 0 is also theta. So, I can write 

this, probability of going from -1 to 0 is equal to probability of eventually going from 0 to +1. 

This you will agree. It does not matter where I start, right? You just have to take 1 step, and 

that is your theta. So, for probability of stopping eventually, given that you start at -1, the 

probability that you eventually end up at +1 is simply theta times theta.  

 

So, I can write, theta is equal to p plus theta square times 1 - p. And because they are 

independent; you go from -1 to 0 and then independently go from 0 to 1; and these are the 

same probability. You solve this, what do you get? This implies theta equal to; see, theta is 



equal to 1 is clearly a solution; it is a quadratic in theta, right? Theta equal to 1 is clearly a 

solution, and theta equal to p over 1 - p is another solution, right?  

 

So, the question is, why is the probability of stopping eventually given X 1 equal to -1? So, if 

X 1 is -1, I am at -1, right? I want to go from -1 to 1 eventually. In order to go from -1 to 1, I 

should eventually go from -1 to 0 and then eventually go from 0 to 1. Probability of 

eventually going from 0 to 1 is my original theta. And because of the IID nature, probability 

of going from -1 to 0 is also statistically the same; it is theta.  

 

And these are independent, so I multiply. So, what is the issue here? So, if p is equal to half, 

then theta equal 1 is the only solution. So, if p is equal to half, so, the cases are as follows: 

So, if p equal to half, then theta equal to 1, is the only solution. So, J is a stopping rule. If p is 

greater than half, then what happens? Theta equal to 1 is the only solution. So, then, J is a 

stopping rule; because, p greater than half, the second solution is not even a probability; you 

can just throw it away.  

 

So, if p less than half, we seem to have 2 solutions, which are valid probabilities 1 and p over 

1 - p. So, if p is like one-third, then p by 1 - p will be half. So, the question is, then, is theta 

equal to 1 correct or theta equal to p over 1 - p correct? It turns out; this requires some 

Markov chains; that this is the correct solution. If p is less than half, then we can show that 

theta equal to p over 1 - p is the correct solution. Wait for this.  

 

We can show this; we can use birthrate Markov chains to show this. Then, J is defective. So, 

you stop only with probability p by 1 - p, if p is less than half; there is a positive probability 

that you do not stop. Now, we are almost out of time; but we can use Wald if you can 

establish what is expectation of J, is it finite or infinite? Then, we can go ahead and use Wald. 

So, we will continue this in the next class. Next class, we will also prove Wald's theorem, 

Wald's equality. Okay? Thank you. So, we will continue this tomorrow. 


