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Strong Law for Renewal Processes: Recall strong law of large numbers. What does it say?

Let be IID random variables, sequence of IID random variables with . So,{𝑋
𝑖
} 𝐸[𝑋] <  ∞

you have,

almost surely. This is the strong law of large
𝑛 ∞
lim
→

𝑆
𝑛

𝑛  =
𝑛 ∞
lim
→

𝑖=1

𝑛

∑ 𝑋
𝑖

𝑛 =  𝐸[𝑋]

numbers for IID random variables with finite mean.

This is what strong law says. So, if you take, in a renewal process, are just some{𝑋
𝑖
}

non-negative, well, actually positive IID random variables, and corresponds to the𝑆
𝑛

𝑛𝑡ℎ

arrival epoch. So, if you take the arrival epoch, divide by and send to , you will get𝑛𝑡ℎ 𝑛 𝑛 ∞

almost surely; it is a straight consequence of the strong law of large numbers. Now, the𝐸[𝑋]

strong law for renewal processes is written not for , but for . So, let me write down.𝑆
𝑛

𝑁(𝑡)
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Theorem: For a renewal process with mean interarrival time , we have𝐸[𝑋] =  𝑋‾

almost surely, and this is true even if . So, for the strong law, the
𝑡 ∞
lim
→

𝑁(𝑡)
𝑡 = 1

𝑋‾
𝑋‾ = ∞

plain strong law for IID random variables, you need a finite mean, for to converge to
𝑆

𝑛

𝑛 𝐸[𝑋]

almost surely.

For the renewal process, almost surely, regardless of whether or
𝑡 ∞
lim
→

𝑁(𝑡)
𝑡 = 1

𝑋‾
𝑋‾ = ∞

. We will only be bothered with the case where . This is true even for𝑋‾ < ∞ 𝑋‾ < ∞ 𝑋‾ = ∞

. And the way you prove that is, prove it for the case when , then use a truncation𝑋‾ < ∞

argument. So, our job is to prove this theorem. Let us first pictorially see what this is saying.

So, recall that, if you look at a plot of versus , you will get some kind of a step; at𝑁(𝑡) 𝑡

every arrival you have, the process steps up by . So, this is, let us say . For some1 𝑁(𝑡, ω
1
)

other value of , you could have a different step function. You will have; this is a processω

. This is the different sample path of the process. So, you are taking over ,𝑁(𝑡, ω
2
) 𝑁(𝑡) 𝑡

which means that for each sample path, you are looking at over .𝑁(𝑡, ω) 𝑡



So, for each fixed , is some function of time, is a step function. You takeω 𝑁(𝑡, ω) 𝑁(𝑡, ω)

over t. What we are saying is that, if you send t to , for a set of lying on a∞ 𝑁(𝑡,ω)
𝑡 → 1

𝑋‾
ω

set of probability 1. On a set of probability 1, . And the set of ’s where𝑁(𝑡,ω)
𝑡 → 1

𝑋‾
ω

does not go to , does not converge at all, or converges to something other than ;𝑁(𝑡,ω)
𝑡

1
𝑋‾

1
𝑋‾

has total probability 0.

That is what this is saying. To be more explicit, if you want, you can plot the as a𝑁(𝑡,ω)
𝑡

function of time. So, if you do that; so, how is going to look? The first arrival occurs, is𝑁(𝑡)
𝑡

going to jump; and then it is going to decay; then it is going to jump again; again going to

decay; it is going to keep doing that; but the value of the jump is going to get smaller and

smaller. Why? Because you are going to increase .𝑡

So, every time there is an arrival, this ; so, I am here plotting not , but , over, It𝑁(𝑡) 𝑁(𝑡) 𝑁(𝑡)
𝑡

is clear, no? I do not think I drew very well. But every time you get an arrival, you get a

jump; but the height of the jump will be, not 1, but how much? , where t is the time at1
𝑡

which the arrival happens. So, this, what we are saying is that, as time becomes very large,

the height which this guy settles at is .1
𝑋‾

So, in a different sample path, you could have; and so on; So, the purple guy is ; the blueω
2

guy is some . What we are saying is that, this function which jumps up and then comesω
1

down, jumps up and comes down, this guy will settle at for almost all , meaning that, in1
𝑋‾

ω

a set of probability 1, this function will converge to . That is the intuitive meaning of what1
𝑋‾

this strong law of large numbers is saying.



Is that clear? So, this can be thought of as the rate of a renewal process. So, is the1
𝑋‾

𝑁(𝑡)
𝑡

total number of arrivals in time , per unit time, because is the total number of arrivals𝑡 𝑁(𝑡)

in ; you are dividing by total time ; so, is the number of arrivals per unit time.(0, 𝑡] 𝑡 𝑁(𝑡)
𝑡

And as becomes large, this is equal to 1 over interarrival time. So, this 1 over expected𝑡

interarrival time is the rate of the process.

So, has the interpretation of the rate of the process. For a Poisson process, of course, this1
𝑋‾

is true, because, well, I mean, Poisson process is just a renewal process; and there is just1
𝑋‾

, which is , which is the rate of the process.1
λ λ
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So, let us try and prove this. So, let me draw this picture. So, this renewal process is running,

0; so, let us say this is my t. So, at time t, there have been arrivals. Now, can someone𝑁(𝑡)

tell me what is the time of arrival of the most recent time; the most recent customer arrival,

what is the time of that arrival? So, is the number of arrivals that have come, so, what is𝑁(𝑡)

the arrival epoch of the most recent arrival? Yes? What is ?𝑛

So, if is a random variable, so, what is the time of the arrival which came, epoch of the𝑁(𝑡)

arrival that came the most recently? So, at , there have been arrivals, so, when did the𝑡 𝑁(𝑡)



previous arrival come? is the epoch of the most recent arrival. No, it is not clear? See,𝑆
𝑁(𝑡)

suppose , so, there have been arrivals; you look back to see when the most recent𝑁(𝑡) = 𝑛 𝑛

arrival came; so, it is the , right?𝑆
𝑛

So, is the epoch of the most recent arrival. Likewise, what is the epoch of the arrival that𝑆
𝑁(𝑡)

is going to come next? . So, this much is clear, right? So, I just want to build up an𝑆
𝑁(𝑡)+1

intuitive argument first. So, if you look at this , I can write this as being sandwiched𝑁(𝑡)
𝑡

between; let me see; so, can I write this:
𝑁(𝑡)

𝑆
𝑁(𝑡)+1

 < 𝑁(𝑡)
𝑡 ≤  𝑁(𝑡)

𝑆
𝑁(𝑡)

Is this correct? I am making the denominator smaller, so that this ratio can get only bigger.

Likewise, I can write ; is it correct? So, you will agree. So, now I want to make very𝑁(𝑡)
𝑆

𝑁(𝑡) + 1
𝑡

large. If I send very large, I want to see what happens to . So, this is true for all ,𝑡 𝑁(𝑡)
𝑡 𝑡 ≥ 0

let us say all . So, if I send very large, this , which is the quantity of interest for𝑡 > 0 𝑡 𝑁(𝑡)
𝑡

me, is going to remain sandwiched between these two things.

So, if I want to prove that goes to some limit, it is enough to show that the thing that is𝑁(𝑡)
𝑡

sandwiched between, is also going to that limit. Then I am done, right; by sandwich theorem,

I would have finished showing what I want to show. Now, let us look at this object and that

object. So, let us look at this. As becomes large, what does this behave like? So, first, when𝑡

the first arrival comes, this will be .1
𝑆

1

Then two arrivals will become . So, if you have little arrivals, it will become ; but as t2
𝑆

2
𝑛 𝑛

𝑆
𝑛

becomes larger and larger, there will be more and more arrivals, and will go through all𝑁(𝑡)

the positive integers. So, this should behave like what? will behave like , where is𝑁(𝑡)
𝑆

𝑁(𝑡)

𝑛
𝑆

𝑛
𝑛



going to . So, intuitively, should converge to what? Say by strong law, so,∞ 𝑛
𝑆

𝑛

𝑆
𝑛

𝑛  → 𝑋‾ 𝑛
𝑆

𝑛

should converge to .1
𝑋‾

So, I have told you some two, three things which I have not fully, rigorously justified, right?

First is that, if , should ?. You have to prove that. It is true, but you have to
𝑆

𝑛

𝑛  → 𝑋‾ 𝑛
𝑆

𝑛
→  1

𝑋‾

prove it. The other is that, as , you need to be getting larger and larger; it has to𝑡 → ∞ 𝑁(𝑡)

go through all the integers and go to .∞

So, first of all, you have to prove that, as , almost surely. So, if I do those𝑡 → ∞ 𝑁(𝑡) → ∞

two things, I will be done. So, we need a couple of lemmas here; and then we use these two

lemmas; the first lemma being that as ; the other is that almost𝑁(𝑡) → ∞ 𝑡 → ∞ 𝑛
𝑆

𝑛
→ 1

𝑋‾

surely. So, actually, it is true for any continuous function.

If almost surely, then almost surely, for all continuous functions f.𝑋
𝑛 

→ α 𝑓(𝑋
𝑛
) → 𝑓(α) 

That we can prove. And the reciprocal function is a continuous function. So, that is all that,

these two ingredients we need to prove this.


