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So, this guy is exactly like; so, you consider; so, this is the conditional joint density of the

Poisson arrival epochs, given . Now, you consider uniform order statistics. Let𝑁(𝑡) = 𝑛

be chosen IID uniformly in . So, now I am saying, forget all about(𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) (0, 𝑡]

Poisson processes; you know what a uniform random variable is, right? So, if I give you

some interval , it is like uniformly throwing a dart on this interval.(0, 𝑡]

You throw darts independently. This is , that is ; I am throwing darts. First uniform, let us𝑛 0 𝑡

say may land here; let us say that is . The second time, you throw another dart uniformly,𝑈
1

independently; that may land here. Then you throw a third dart, it may land here; then the

fourth dart may land here, and so on. And you throw basically darts; they land wherever𝑛

they land. The joint density of these is easy to calculate.(𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
)



So, what is the density of any of these 's? . So, what is the joint density of these𝑈
𝑖

1
𝑡

? The product, right? They are independent. So, the joint density should be .(𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) 1

𝑡𝑛

That is clear, is it not? So, I can write

𝑓
𝑈𝑛(𝑢𝑛) =  1

𝑡𝑛 ,  0 ≤ 𝑢
1

≤ 𝑡,.  .  .  0 ≤ 𝑢
𝑛

≤ 𝑡

See, what I am saying is that, if you take these; so, you are throwing these uniform darts; so,

they land wherever they land; can land somewhere, can land somewhere. Now, you go𝑈
1

𝑈
2

ahead and sort these. Now, the in this case is the smallest, in this case is the second𝑈
3

𝑈
2

smallest, and so on. So, actually the largest does not have to be , I do not know why I put𝑈
𝑛

here. This could be, for all we can, this could be some .𝑈
𝑛

𝑈
13

I do not know, right? could be somewhere here. You see what I mean, they land wherever𝑈
𝑛

they land, but now you order them. Then you define an order statistics of these, meaning that

you call the as some variable, let us say . Then you say is the second𝑚𝑖𝑛 (𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) 𝑌

1
𝑌

2

min of all this; , the third min of all this; so on till which is the max of all these guys.𝑌
3

𝑌
𝑛

Now, you look at the joint density of not , but . Now, what is that,(𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) (𝑌

1
, 𝑌

2
,.... 𝑌

𝑛
)

is the question. It will turn out exactly like this, .𝑛!

𝑡𝑛
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Let me just do that. So, now, order statistic uniform, what I mean is that, let

; ; so, until𝑌
1 

=  𝑚𝑖𝑛 (𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) 𝑌

2
=  𝑠𝑒𝑐𝑜𝑛𝑑 𝑚𝑖𝑛 (𝑈

1
, 𝑈

2
,.... 𝑈

𝑛
)

. So, this are uniform in , and they can be in𝑌
𝑛 

=  𝑚𝑎𝑥 (𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
)  (𝑈

1
, 𝑈

2
,.... 𝑈

𝑛
) (0, 𝑡]

any order, right? The first one may land here, the second one may land here, third one may

land here, and so on.

But these 's are ordered; is the smallest of the 's, is the second smallest of the 's,𝑌 𝑌
1

𝑈 𝑌
2

𝑈

and so on. So, these 's cannot be anything; these 's will have to satisfy𝑌 𝑌

. Now, for this, what is the joint density, is the question. What is0 < 𝑦
1

< 𝑦
2

<.  .  < 𝑦
𝑛

< 𝑡

? See, we can calculate this actually using a simple intuitive argument. Let us say𝑓
𝑌𝑛(𝑦𝑛)

there are only 2 variables, and which are uniform.𝑈
1

𝑈
2

Let us say, so, for the and ; so, if you look at; this is . I am looking at, this is the𝑈
1

𝑈
2

(0, 𝑡] 𝑢
1

; this is for . I know that and are uniformly distributed in this square, independent𝑢
2

𝑈
1

𝑈
2

uniformly distributed. So, the density will be what? The joint density of and will be .𝑈
1

𝑈
2

1

𝑡2

And it will be; so, it is like coming out of the surface, it is constant, .1

𝑡2



Now, if you look at; so, you can see that in this region, the joint density is constant equal to

. . So, likewise, if you just look at the same ; but you look at, this is1

𝑡2 𝑓
𝑈(2)(𝑢(2)) =  1

𝑡2 (0, 𝑡]

the axis for , that is the axis for . Now, what happens? Now, remember that𝑦
1

𝑦
2

, and . So, in that case, the density will be non-zero𝑌
1 

=  𝑚𝑖𝑛 (𝑈
1
, 𝑈

2
) 𝑌

2
=  𝑚𝑎𝑥 (𝑈

1
, 𝑈

2
)

in which region? Only here.

So, if and , you will have; that is one possibility. The other possibility is the𝑌
1

= 𝑈
1

𝑌
2

= 𝑈
2

other way, and . Now, both of these have the same value of density, . So,𝑌
1

= 𝑈
2

𝑌
2

= 𝑈
1

1

𝑡2

what essentially ends up happening is that this uniform density over the square, in the

previous case, just folds over, so to speak, right? All this mass that lies below this line, just

gets transferred here, because there are two possibilities of ordering.

So, here, . And this is true for, in this region. This is for .𝑓
𝑌(2)(𝑦(2)) =  2

𝑡2 0 < 𝑦
1

< 𝑦
2

< 𝑡

So, this is exactly what is happening with random variables, except now there are𝑛 𝑛!

possibilities. Let us say can be in any one of the orders, and the joint density(𝑈
1
, 𝑈

2
,.... 𝑈

𝑛
) 𝑛!

is of course constant, . And corresponding to each one of these orderings; see, there is1

𝑡𝑛 𝑛!

only one fraction of the -dimensional hypercube, which will now be occupied, in the𝑛! 𝑛 𝑛

dimensions.

Just like this, only half of the square is occupied. In dimensions, there is which will be𝑛 1
𝑛!

occupied, and the density will have to be times bigger. So, same sort of logic, except you𝑛!

can draw it. Same logic, there is nothing different. This 2 is , if you like. So, what am I2!

saying essentially? So, basically this argument can be formalised.

So, we are saying that the uniform order statistic has this as the density, for

, which is the same as the; so, this expression you agree, right?0 < 𝑦
1

< 𝑦
2

<.  .  < 𝑦
𝑛

< 𝑡

This is like , except in the dimensions, which is the same as the conditional arrival2

𝑡2 𝑛



density of the Poisson point process. So, here is what I am saying. So, this result is saying

something very powerful.

You take one scenario where a Poisson process is running and fixing some time . It so𝑡

happens that there are arrivals. The distribution of the arrival times of these arrivals will𝑛 𝑛

be statistically indistinguishable from just fixing this time and throwing independent𝑛

uniforms on this interval, and looking at the ordered distribution. So, if I give you two

different; one coming from this Poisson process, as I said; in other case, I just throw 𝑛

uniforms in ; you will not be able to tell the difference between what came from a(0, 𝑡]

Poisson process and what came from throwing uniform points on .(0, 𝑡]

What is the probability of two independent uniforms, say taking the same value? 0. They are

continuous random variables; what is the probability of two continuous random variables

which are independent taking the same value? 0. So, is this clear?
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Now, this is the joint distribution. So, moral is that; Joint conditional arrival epochs of a

Poisson process, given is the same as the order statistics of n IID uniform random𝑁(𝑡) = 𝑛

variables in ; they are statistically indistinguishable. So, whatever you know about IID(0, 𝑡] 𝑛

uniforms and these order statistics applies for the joint density of the arrival epochs, given

; joint conditional density of arrival epochs.𝑁(𝑡) = 𝑛



Now, you can calculate things like this; ; equal to what? We will calculate this.𝑓
𝑆

1
|𝑁(𝑡)

(𝑠
1
|𝑛)

How can you calculate this? So, you can actually calculate the complementary CDF a little

easier. This is like the smallest of the uniforms. You know, for the smallest of uniforms,𝑛 𝑛

you can calculate what the CDF is. So, for example, if you look at probability that; let me just

write this down correctly.

. This is like all uniforms are bigger than this . That is𝑃(𝑆
1

> 𝑠
1
|𝑁(𝑡) = 𝑛) =

𝑡−𝑠
1

𝑡( )𝑛

𝑠
1

what this is. This is true for . So, you differentiate this; you see what I mean,0 < 𝑠
1

< 𝑡

right? From this, you can; so, is 1 minus all that. Differentiate that to get this.𝑃(𝑆
1

≤ 𝑠
1
)

From this, you can get this easily. So, this is an example.

Now that you have the joint density of , given , you can also get the(𝑆
1
, 𝑆

2
,... 𝑆

𝑛
) 𝑁(𝑡) = 𝑛

joint density of , given . Would anything change really? The density(𝑋
1
, 𝑋

2
,... 𝑋

𝑛
) 𝑁(𝑡) = 𝑛

will be the same for , except that the constraints will now be; so, this constraint(𝑋
1
, 𝑋

2
,... 𝑋

𝑛
)

will have to apply, right? Now, this constraint will simply apply as .
𝑖=1

𝑛

∑ 𝑥
𝑖

< 𝑡 𝑤ℎ𝑒𝑟𝑒  𝑥
𝑖

> 0

So, you can also get;
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Conditional joint density of , given . This will just turn out to be(𝑋
1
, 𝑋

2
,... 𝑋

𝑛
) 𝑁(𝑡) = 𝑛

; the expression will be the same, because, after all, the density is𝑓
𝑋(𝑛)|𝑁(𝑡)

(𝑥(𝑛)|𝑛) =  𝑛!

𝑡𝑛  

constant; for, essentially you have this, . So, it is the same density
𝑖=1

𝑛

∑ 𝑥
𝑖

< 𝑡 𝑤ℎ𝑒𝑟𝑒  𝑥
𝑖

> 0

except that now , and of course, each of these 's have to be non-zero.𝑠
𝑛

< 𝑡 𝑥
𝑖

So, this is symmetric. So, if you were to call as , and as , then, it is completely𝑋
13

𝑋
9

𝑋
9

𝑋
13

symmetric. If you interchange the indices of two of these 's, their density would not change𝑋
𝑖

at all, which means that the density of each of these 's, the distribution of each of these 's,𝑋
𝑖

𝑋
𝑖

the conditional distribution is the same, which should not be too surprising.

In fact, we know the conditional distribution of which is the same as; note that this is the𝑆
1

same as the conditional distribution of , which will also be the same, which is𝑓
𝑋

1
|𝑁(𝑡)

(𝑥
1
|𝑛)

equal to whatever, I can calculate from this CCDF. Once I know the marginal of the𝑋
1

marginal of all the 's will have to be what? Exactly the same, because there is this perfect𝑋
𝑖

symmetry in this joint distribution. So, in the marginal densities you can easily calculate from

here.
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So, the marginal conditional distributions of the 's are the same . So, you can just write𝑋
𝑖

∀ 𝑖

probability; so, you can get this;

𝑃(𝑋
𝑖

> 𝑥 | 𝑁(𝑡) = 𝑛) = 𝑡−𝑥
𝑡( )𝑛

;  0 < 𝑥 < 𝑡

Is that clear? See, I calculated the marginal density of , the first arrival time, using the𝑆
1

uniform order statistics property, which turns out to be the; is same as ; so, the density𝑆
1

𝑋
1

of is this; I mean, you can get from this.𝑋
1

So, but these 's are perfectly symmetric, so, each of these 's has this kind of a distribution.𝑋
𝑖

𝑋
𝑖

Is that clear? And also you can calculate; this is also something you can calculate. If you look

at what is , which is the same as or .𝐸[𝑋
𝑖
 | 𝑁(𝑡) = 𝑛] 𝐸[𝑆

1
 | 𝑁(𝑡) = 𝑛] 𝐸[𝑋

1
 | 𝑁(𝑡) = 𝑛]

So, 's density, this CCDF we know, right? If you calculate, what do you think you will get?𝑆
1

Any intuitive guesses?

If you look at this picture; go back and look at this picture; where is that? Here. You are

having; so, you know that you have arrivals in , right? And all these interval times, we𝑛 (0, 𝑡]

said, have the same distribution. And so, how many intervals do you have here? 1, 2, n + 1.

So, each of these intervals should be what? ; And also if you want𝐸[𝑋
𝑖
 | 𝑁(𝑡) = 𝑛] =  𝑡

𝑛+1

this, what will this be? So, .𝐸[𝑆
𝑖
 | 𝑁(𝑡) = 𝑛] =  𝑖𝑡

𝑛+1

So, they are all equal in expectation and distributed like so. Each of these 's, the conditional𝑋
𝑖

interval times are distributed like this, like what is given in this equation. Is that clear? So,

now you can calculate all this very easily. I am just giving some examples of what you can

calculate. So, the moral of the story is that, again, in an interval , given that there are(0, 𝑡] 𝑛

Poisson arrivals, the arrival times of these arrivals are exactly like some uniform IID𝑛 𝑛

points thrown on the . You cannot distinguish them statistically. So, we stop here.(0, 𝑡]


