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Good morning, welcome back. Today we will discuss merging and splitting of Poisson

processes. We started discussing merging in the previous lecture, we will just complete what

we have to say and also do splitting today. So, for merging, you have two Poisson processes.

So, , which has rate, let us say, call this , and let us colour this blue. And there is𝑁
1
(𝑡) λ

another process of rate , which is, let us say, a red process. This is 0.𝑁
2
(𝑡) µ

Now, I am looking at the merged process, and I am not able to distinguish colours. I am just

looking at whether there is an arrival or not. So, you see what I mean. There will be an arrival

here, arrival here, arrival here, one here, one here and so on. So, this process is simply 𝑁 (𝑡)

= + . So, this is a Poisson process of rate . This is a, is a Poisson process of𝑁
1
(𝑡) 𝑁

2
(𝑡) λ 𝑁

2
(𝑡)

rate .µ



And and are independent, these two Poisson processes are assumed to be𝑁
1
(𝑡) 𝑁

2
(𝑡)

independent. Now, what we said in the last class is that, the merged process + is𝑁
1
(𝑡) 𝑁

2
(𝑡)

also a Poisson process of rate .λ + µ
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So, this is the thing. If is a Poisson process of rate and a{𝑁
1
(𝑡), 𝑡 ≥ 0} λ {𝑁

2
(𝑡), 𝑡 ≥ 0}

Poisson process of rate , the process = + is a Poisson process ofµ {𝑁(𝑡) 𝑁
1
(𝑡) 𝑁

2
(𝑡),  𝑡 ≥ 0}

rate . I forgot to say that and are independent; please write that. andλ + µ 𝑁
1
(𝑡) 𝑁

2
(𝑡) 𝑁

1
(𝑡)

are independent, otherwise this is not true. So, we looked at this using this micro slot𝑁
2
(𝑡) δ

picture, if you remember. So, you can look at some slot here, let us say you look at someδ δ

slot here, some slot .δ (𝑡, 𝑡 + δ]
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So, here, definition 3 you can use. What is definition 3? The probability of arrival in any

micro slot is , and IIP and SIP holds. So, you can haveλδ + 𝑜(δ)

𝑃(𝑁
~

(𝑡, 𝑡 + δ) = 0) = 𝑃( 𝑁
~

1
(𝑡, 𝑡 + δ) = 0 & 𝑁

2

~
(𝑡, 𝑡 + δ) = 0 )

And this process and process are independent.𝑁
1
(𝑡) 𝑁

2
(𝑡)

So, this becomes a product . Now, this we𝑃( 𝑁
~

1
(𝑡, 𝑡 + δ) = 0) .  𝑃( 𝑁

2

~
(𝑡, 𝑡 + δ) = 0 )

know to be which is equal to .(1 − λδ + 𝑜(δ))(1 − µδ + 𝑜(δ)) 1 − (λ + µ)δ + 𝑜(δ)

Then you will get , all that can be absorbed into another term. Similarly,λµδ2,  λδ𝑜(δ) 𝑜(δ)

you can write what is the .𝑃(𝑁
~

(𝑡, 𝑡 + δ) = 1)

This is possible if there is one arrival in the first process and zero arrival in the second

process, or the other way around; and they are independent of course. So, this will just turn

out to be . So, this corresponds to one arrival in the first(λδ + 𝑜(δ))(1 − µδ + 𝑜(δ))

process, no arrival in the second process; or you can have it the other way, and these are

disjoint.

You can have . There is no other possibility. This, if you(µδ + 𝑜(δ))(1 − λδ + 𝑜(δ))

simplify, you will get something like; so, you will get . So, that corresponds to this(λ + µ)δ



multiplying this 1, and this multiplying this 1. And then, you will get a whole bunch ofλδ µδ

and terms. So, essentially what remains is all one .δ2 𝑜(δ) 𝑜(δ)

And similarly, you can argue that , you can argue, is equal to . So,𝑃(𝑁
~

(𝑡, 𝑡 + δ) ≥ 2) 𝑜(δ)

we have just gotten the right incremental distribution; we still have to prove SIP and IIP. So,

in particular, I have to prove that the random variable has both IIP and SIP. So, to prove,𝑁(𝑡)

it is not difficult to argue at all. So, let us say, you take some interval like that, and some other

interval like that.

You want to prove that, in the merged process, you want to prove that the number of arrivals

here is independent of the number of arrivals here. So, the number of arrivals here is nothing

but the sum of arrivals in the corresponding interval in the two processes. Now, for the first

process, of course, IIP holds. So, in the corresponding interval, if you look at it here, you can;

this is not at all difficult to argue, as you can imagine.

So, you look at the corresponding intervals here. And this process satisfies IIP. So, this is

independent of that number of arrivals. Number of arrivals here is independent of the number

of arrivals here; and of course, the number of arrivals here is independent of the number of

arrivals here. Why? The number of arrivals in that interval is independent of the number of

arrivals in that interval, why? Because the processes are independent.

So, using IIP for the individual processes and the fact that the processes are independent, you

can get IIP for the composite process or the merged process. Now, we have to argue SIP.

Sorry, maybe this should be here. This should be here. So, for SIP, what do you do? So, you

have to prove that the number of arrivals in any interval is only a function of the width of the

interval, but the total number of arrivals in this width is nothing but the total number of

arrivals in the two processes put together; and for that, SIP holds, for the separate processes.

From this you can argue SIP for the merged process. So, I will just say IIP and SIP follow

from the respective properties of and , and the fact that they are independent.𝑁
1
(𝑡) 𝑁

2
(𝑡)

Now, I happened to use definition 3, it turned out to be quite natural, in the sense that I am



just looking at the increments of the merged process. Now, you can also look at other

definitions, definition 2 or definition 1.
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For example, if you want to do the second definition; proof using definition 2. What is

definition 2 by anyway? Definition 2 says that is Poisson PMF for every ; is𝑁(𝑡) 𝑡 𝑁(𝑡)

Poisson with parameter , whatever, , whatever the parameter is; and of course, SIP andλ𝑡 µ
1
𝑡

IIP. See, that SIP and IIP hold, I have already shown; using the previous argument still holds.

I just have to prove that; so, if I look at this, 𝑃(𝑁(𝑡) =  𝑛).

If this turns out to be Poisson PMF with parameter , then I am done. So, this is(λ + µ)𝑡

nothing but the probability that; so, I want the PMF; so, for any , I want the PMF of𝑡 𝑁
1
(𝑡)

and . So, what is this, is the question. But I already know that; we know this. What is𝑁
2
(𝑡)

the PMF of ? And similarly, this also I𝑁
1
(𝑡) 𝑃(𝑁

1
(𝑡) =  𝑘) =  𝑒−λ𝑡(λ𝑡)𝑘

𝑘! ,  𝑘 = 0, 1, 2,...

know; .𝑃(𝑁
2
(𝑡) =  𝑚) =  𝑒−µ𝑡(µ𝑡)𝑚

𝑚! ,  𝑚 = 0, 1, 2,...

So, I know that is Poisson with parameter ; is Poisson with parameter . And𝑁
1
(𝑡) λ𝑡 𝑁

2
(𝑡) µ𝑡

I want to find the PMF of + . And this and are of course independent.𝑁
1
(𝑡) 𝑁

2
(𝑡) 𝑁

1
(𝑡) 𝑁

2
(𝑡)

So, you are looking at the sum of 2 independent Poisson random variables. And you may



already know that the sum of 2 independent Poisson random variables with parameter, let us

say and is Poisson with parameter with + .λ
1

λ
2

λ
1

λ
2

So, we can either use; so, how do you prove that? So, we can use discrete convolution. See,

you are allowed to use convolution because and are independent, otherwise you𝑁
1
(𝑡) 𝑁

2
(𝑡)

cannot use convolution. You can use discrete convolution to show that this is also a Poisson

with parameter (λ + µ)𝑡.

𝑃(𝑁
1
(𝑡) +  𝑁

2
(𝑡) =  𝑛) =  𝑒−(λ+µ)𝑡((λ+µ)𝑡)𝑛

𝑛! ,  𝑛 = 0, 1, 2,...

You know how to convolve, right? You can do convolution.

But, so, if you were doing an undergraduate probability course, you will probably sit and do

the convolution. Now, we already know something about the Poisson process. So, we can;

there is actually a cleverer way to do this. See, you just consider one Poisson process. If you

have one Poisson process, you look at intervals , let us say, and intervals, in another(0, 𝑡
1
]

interval ; sorry .(𝑡
1
, 𝑡

2
] (0, 𝑡

1
]
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So, this is a separate consideration, just to see that the sum of two independent Poissons is a

Poisson. So, say this is 0; let us say ; and this is . So, this is + . And you have some𝑡
1

𝑡
2

𝑡
1

𝑡
2

Poisson process running. So, you know that this, the number of arrivals in is Poisson(0, 𝑡
1
]



distributed with parameter; what? . And the number of arrivals in this isλ𝑡
1

(𝑡
1
, 𝑡

1
+ 𝑡

2
]

Poisson with parameter . Why?λ𝑡
2

SIP, because the width is . And of course, the number of arrivals in this width, in is𝑡
2

(0, 𝑡
1
]

independent of the number of arrivals in ; so, these two are independent. Now,(𝑡
1
, 𝑡

1
+ 𝑡

2
]

the total number of arrivals in this entire width; you look at this width; we know this to be

Poisson with parameter . That also we know. So, what have we established?λ𝑡
1

+ λ𝑡
2

So, I know that the sum of two Poissons with parameters and , independent Poissons isλ𝑡
1

λ𝑡
2

a Poisson with parameter ; the parameters are getting added up. See, that is all thatλ𝑡
1

+ λ𝑡
2

I want. In the other case, when I am merging two processes, again the parameters are getting

added up. The only difference there is that the rates are different, the is the same. Here, the𝑡

parameter is the same and the 's are different.λ 𝑡

But that does not matter, right? You are just looking at two Poisson PMFs, this has nothing to

do with stochastic processes. So, call to be and to be , you are getting a Poissonλ𝑡
1

ξ
1

λ𝑡
2

ξ
2

PMF with parameters ; and that is all that is happening even in the merging case. So,ξ
1

+ ξ
2

this is just a clever way of showing that the sum of two independent Poissons is a Poisson

with the parameters added up. Is this argument clear?

So, you do not have to; if you are bored of convolution, you do not have to convolve; this is a

clever way to see this. So, this is also a nice proof. And of course, IIP and SIP, you already

did, right? You have to show IIP, SIP also. So, definition 2 also is a valid way to approach

this result. Do you know how to approach this using the first definition?
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So, proof from definition 1. Definition 1 is what? Independent exponential interarrival times.

So, just again, let us look at the blue process and the red process. See, I am doing this so that;

for a splitting case for example, I will not do the proof using all 3 definitions. I am just doing

this once, so that you get the hang of it. So, this is your blue process and that is your red

process.

So, I want to call this guy , , et cetera; and let us say, I call this guy , et cetera; of𝑋
1

𝑋
2

𝑌
1
,  𝑌

2

course, the merged process will have arrivals from both. Now, here, if you look at the first

interarrival time, let us say, call this , et cetera. What is in terms of the 's and 's?𝑍
1
,  𝑍

2
𝑍

1
𝑋 𝑌

So, the first arrival in the merged process will simply be at; now, is exponential with𝑋
1

parameter , is exponential with parameter ; that is what I am given; and of course,λ 𝑌
1

µ 𝑋
1

and are independent.𝑌
1

Now, you probably know this already; but you can also derive it from first principle, it is not

at all difficult; that the minimum of two independent exponential random variables is; yeah,

he is right. What he is saying is that, the complementary CDF of the minimum is the product

of the two complementary CDFs. So, essentially, you will get that is also exponential with𝑍
1

parameter .λ + µ



So, if you look at this, , this is equal to the probability that ), because𝑍
1

> 𝑡 𝑃(𝑋
1

> 𝑡,𝑌
1

> 𝑡

the minimum is greater than , then both are bigger than . So, this is of course equal to the𝑡 𝑡

product; ; because of independence, the two processes are independent;𝑃(𝑋
1

> 𝑡)𝑃(𝑌
1

> 𝑡)

so, and are independent. And this is nothing but , which is .𝑋
1

𝑌
1

𝑒−λ𝑡𝑒−µ𝑡 𝑒−(λ+µ)𝑡

This means that is exponential with parameter . So, what have we proven? So, we𝑍
1

λ + µ

proved that, in the merged process, the first arrival time is exponential with parameter ,λ + µ

which is correct, which is what you want. Are we done? No, we have to prove that the

subsequent inter-arrival times are, they are all exponential and they are all independent. This

basically follows from memorylessness.

So, the way I have drawn it, this blue process has created the first arrival; of course, it could

also be that the red process created the first arrival. But nevertheless, see, the first process

create an arrival here, let us say at some particular time, this is, let us say some time . Forτ

the red process, from the time to the next arrival is; what? Is also exponential. We provedτ

that theorem, remember?

You fixed a time and you looked at the time to the next subsequent arrival. So, you look at𝑡

the first process. The second process does not know anything about the first process, it is just

some time . At the time , the time to the subsequent arrival of the second process is anτ τ

exponential with parameter . It is an exponential parameter ; that is all that I am saying.µ µ

And of course, the next arrival in the blue process is of course an exponential with parameter

, by definition. Now, the next arrival in the composite process is the minimum of this guyλ

and the . This time to the next arrival in the red process is exponential with parameter ,𝑋
2

µ

from the theorem that we proved. And this is exponential with parameter . And these twoλ

are independent. Why? Processes were independent.

So, again, you are looking at a minimum of two independent exponentials. So, then you can

argue; so, using memorylessness that subsequent interarrival times in the merged process,



also independent exponentials with parameter . So, the trick is; so, you have gotten theλ + µ

first arrival in the merged process. In this picture, it comes from the blue process. You look at

the time ; the time to the subsequent arrival in the red process, this guy is exponential withτ

parameter .µ

We know this from the theorem; and it is of course independent of everything that happened

in the past. And likewise, this is also an exponential, the time to next arrival here. So, the

time to next arrival in the merged process is a minimum of two exponentials which are

independent, because the two processes are independent. So, again, it will be an exponential

with parameter .λ + µ

And to show that this should be independent of the previous exponential. That follows from,

again, the theorem that said that this width, this exponential is independent of everything that

happened in the past. And of course, this exponential is also independent of everything that

happened in the past. So, these two together, you can get what you want. So, what have we

shown? So, we have shown the same result in 3 different ways, using the 3 different

equivalent definitions, which is not surprising.

I think all 3 are insightful. Perhaps, the most intuitively easy is the first one, you look at these

micro slots and you get this straight away. In definition 2 and definition 3, you have to know

something about the sum of Poissons being Poisson or minimum of exponentials being

exponential. But there is no approximation involved. So, in the definition 2 proof and the

definition 1 proof; but there is no approximation involved, that is the nice thing, it is exact.

But you have to argue somewhat carefully that these bits are independent of the past and all

that. So, completing the proof requires some writing down a bunch of arguments. This, what I

have said in this one sentence, you need to write it out properly, in terms of the theorem, that

big theorem we proved, the memorylessness theorem that we proved. Good. So, this

concludes the module on merging.


