
Stochastic Modeling and the Theory of Queues 

Prof. Krishna Jagannathan 

Department of Electrical Engineering 

Indian Institute of Technology - Madras 

 

Module - 1 

Lecture - 1 

Review of Probability Theory: Random Variable 

 

(Refer Slide Time: 00:15) 

 

Welcome. This is EE6150, Stochastic Modeling and Theory of Queues. This is a course on 

Discrete Stochastic Processes.  In particular, the topics we cover will be as follows.  

0. Brief review of Random variables, Sequences of Random variables, and Convergence. 

Then the main topics in this course are the following:  

1. Poisson Process.  

2. Renewal processes.  

3. Markov chains {In detail, about half the course is about Markov chains}.  In Markov 

chains, we will learn  

a. Finite State Space and Countable State Space. In both,  

b. Discrete and Continuous Time.  

And we will look at 

4. Queueing Examples and Applications throughout.  



 The word ‘queue’ is the only word in English language that is still pronounced the same 

way when the last four letters are removed. Queueing: is British, Queuing is American.  The 

word Queueing is one of the few words in English which has 5 vowels consecutively.  Learn 

more 

 

This is essentially a discrete stochastic processes course with particular emphasis on queueing 

applications and examples. We will also give examples from other fields occasionally.  
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I will closely follow a book, Stochastic Processes, Theory for Applications authored by 

Gallager. I learned from this book, so I find it easy to teach from this book. It is a good book 

especially for applied people. So, if you are not a pure mathematician and if you want to look 

at engineering applications, this is a good book to learn from. It is sufficiently rigorous without 

being too fussy about details. And it is good for application, certainly.  

https://web2.uwindsor.ca/math/hlynka/qfaq.html#:~:text=A%3A%20They%20are%20both%20correct,Brill%2C%20J.W.
https://web2.uwindsor.ca/math/hlynka/qfaq.html#:~:text=A%3A%20They%20are%20both%20correct,Brill%2C%20J.W.
https://en.wikipedia.org/wiki/Robert_G._Gallager
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Figure 1 

Now, let’s start with basic probability review.  

All of probability theory starts with a triple (Ω, ℱ, ℙ). This you would have seen in a probability 

course. This Ω here, is a sample space consisting of all possible outcomes of a random 

experiment. This ℱ is a collection of events. It consists of subsets of Ω, those are of interest. 

This ℱ is known as a sigma algebra, sigma algebra of events. And this ℙ,  is a probability 

measure which assigns numbers between 0 and 1 to the events.  

 

So, each element of   ℱ is some subset of  Ω , and probability is assigned to each of these events 

as a number between 0 and 1. These probabilities have to satisfy some axioms, in particular  

1. The probability of the empty set is always 0.  

2. The probability of sample space is always 1.  

3. The probability of a countable union of disjoint events is equal to the sum of the 

probabilities of the individual.  

So, these 3 axioms have to be satisfied. These may be familiar from a probability course.  

Now, everything we will do, assumes some implicit probability space.  

There is some Ω, ℱ, and ℙ which is already been defined and given to us. And everything starts 

from there. Once you have this probability space, there are random variables which can be 

defined on Ω.  

  



  Q. What is a random variable?  

A: Random variable is a function. Random variable is a function from Ω → ℝ.  

So, a random variable is a terrible misnomer, it is neither random, nor it is a variable. It is a 

deterministic function from Ω → ℝ.  

Q: Then, what is random?  

A: The input to the random variable. When the random experiment occurs, there is a ω that is 

picked by nature, which is the random part.  

 

That is the only random thing in all of probability theory. Once ω  realizes 𝑋(ω) is a fixed real 

number, it is ω  that is random, it is not the random variable that is random.  

Think of it this way, let us consider a function 𝑓(𝑥) = 𝑥2. It is not random.  

But if  𝑥 is random, 𝑓(𝑥) will be random. So, the randomness cannot be blamed on the function.  

 

It is to be blamed on the input to the function. So, a random variable is a function from   

Ω → ℝ. There is a mild technical condition that is required; it is not just any function.  

Random variable is a function from Ω → ℝ such that, let us say, if you look at those ω’s which 

map to less than or equal to 𝑥 ; These ω’s have to be events, events for all real x.  

 

This is a definition of a random variable. We can understand this better by drawing this picture  

[Figure 1]. The ω is point inside the circle, the circle is the set of all possible values of ω which 

is the sample space Ω. And there is some ℱ, ℙ defined on this Ω. So, every time; so, there is a 

ω  that is picked by nature. X maps ω on to the real line, and thus for every ω,  𝑋(ω)  realises 

as a real number.   

 

Now for some 𝑥 fixed on the real line and for an interval from −∞ to 𝑥. We are looking at the 

set of all  ω’s for which 𝑋(ω) belongs to (−∞, 𝑥]. In some sense you can look at this as, like 

the pre-image of the semi-infinite interval, (−∞, 𝑥], under this mapping. You look at those 𝜔’s 

which map to less than equal to 𝑥. There are some 𝜔’s which map to less than equal to 𝑥, there 

are other 𝜔’s which map to greater than 𝑥.  

 

You look at those 𝜔’s which map to less than or equal to 𝑥. So, that will be some subset of the 

sample space obviously. You want that to be an event for every real 𝑥.  



A function which satisfies this property is called a measurable function. In probability, it is 

just called a random variable.  
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Reason: Why do we want to impose this condition?   

Suppose the condition is satisfied, for every 𝑥, 𝑋(ω) ≤ 𝑥 is an event. 

 {ω| 𝑋(ω)   ∈ (−∞, 𝑥]}  ∈ ℱ. Then you can talk about the probability of the event. Once some 

subset of  Ω is an event, you can assign probability to it. So, you can talk about this for each 

real 𝑥.  

 

If this were not an event, then you cannot talk about its probability. Only events have 

probabilities. Not all subsets of ω may have probabilities assigned to them. Now, 

ℙ({𝜔|𝑋(𝜔) ≤ 𝑥}) is very important in probability. What is this? This is the CDF. This is the 

cumulative distribution function of 𝑋. It is denoted by 𝐹𝑋(𝑥). So, 𝐹𝑋(𝑥) is simply the 

probability of random variable taking values less than or equal to 𝑥.  

 

It is easy to establish that, if you are given the CDF of a random variable, then you know 

everything about its statistical properties. So, for any nice subset of ℝ; you can talk about the 

random variable taking values in that subset of  ℝ. By nice, I mean Borel, Borel subset of ℝ. 

Now, this was a discussion about one random variable. We could of course have multiple 

random variables on the same sample space (Ω, ℱ, ℙ). 

 

 

https://en.wikipedia.org/wiki/Borel_set
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Figure 2 

If you want to discuss that, Multiple Random Variables. Let us talk about two random variables 

first. Let us say X and Y are random variables are defined on (Ω, ℱ, ℙ). There are two different 

random variables defined on (Ω, ℱ, ℙ). i.e., 𝑋 is a function from Ω → ℝ, satisfying the property 

that we talked about; and Y is another function from Ω → ℝ, satisfying the same property.  

So, the pre-images of these semi-infinite intervals are events, for both 𝑋 and 𝑌. The values that 

these random variables take is determined by the same underlying outcome, the elementary 

outcome, ω. So, you can think of 𝑋 and 𝑌 as, let us say, one of them is rainfall, the other is 

humidity on a particular day.  

 

There is an underlying randomness which gives both, the values for both X and Y. So, the way 

to look at this in Figure 2. Observe it using two axes and look at ℝ2 for the corresponding point 

inside the circle. So, 𝑋 is a map from Ω → ℝ; 𝑌 is a map from Ω → ℝ. It is useful here to look 

at the joint map 𝑋, 𝑌 from Ω → ℝ2, because it is the same ω which realises the values of X 

and Y. So, you look at the map from the sample space to ℝ2.  

 

And then, you realise a point (𝑋(ω), 𝑌(ω)). For every ω, there is a point that realises on ℝ2. 

This reason we look at it this way as opposed to looking at two real lines, (one for X and one 

for Y) is that it is the same underlying ω which realises these values. So, there could be some 

sort of correlation or dependence between the values it takes. So, a higher temperature could 

imply a higher humidity or whatever it is, that the underlying model is talking about.  



 

So, instead of looking at two real lines, we look at ℝ2; which captures the joint variation in 

these two random variables. Now, what can be shown is that, just like you have a CDF in the 

one-dimensional case, you can argue that if you have the semi-infinite rectangles, as shown in 

Figure 2. We will look at the shaded region for some 𝑥 and 𝑦 on the axes respectively.  

 

Consider the ω’s for which 𝑋(ω) is less than or equal to 𝑥 and 𝑌(ω) less than or equal to 𝑦. 

We can argue that this is an event. And if this is an event for all 𝑥, 𝑦 ∈ ℝ;, you can talk about 

its probability. And what is the probability of that?  
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So, we can talk about the probability, that 𝑋(ω) is less than or equal to 𝑥 and 𝑌(ω) less than 

or equal to 𝑦; ℙ({𝜔|𝑋(𝜔) ≤ 𝑥; 𝑌(𝜔) ≤ 𝑦}), which is the joint CDF, denoted by 𝐹𝑋,𝑌(𝑥, 𝑦). 

Convention to followed: Always big letters for the names of the random variables and small 

letters for the specific real values that they take. Please do not interchange this.  

 

So, again, if you are given the joint CDF of 𝑋 and 𝑌, you know everything about these joint 

statistical properties.  

 

In fact, given the joint CDF, you can calculate the marginal CDF. So, for example, if you put; 

in joint CDF, they have several properties, but if you want to calculate 𝐹𝑋(𝑥), just the marginal 

CDF of X, you can just calculate it by  

FX(x) = lim
y→∞

FX,Y (x, y) 



Then you will get the marginal of X. And similarly, if you want the marginal of Y, send the 

other variable 𝑥 to infinity.  

 

Given the joint CDF, you can always recover the marginal CDF. But of course, given the 

marginal CDF, there is no way you can recover the joint CDF, because you are losing 

information on how they vary jointly. You can only understand, how x takes values on real line 

and y takes values on its real line, on the other real line. You miss the joint variation. So, the 

information is lost.  

 

But once you know the joint CDF, you know everything about the statistical properties of 𝑋 

and 𝑌. Similarly, this can be extended to 𝑛 random variables. Nothing changes; it is just a map 

from Ω → ℝn, where ℝn is the n-dimensional Euclidean space. This is the end of the first 

module. 


