
Digital System Design

Professor Neeraj Goel

Department of Computer Science Engineering

Indian Institute of Technology Ropar

Lecture 65

FPGA

Hello everybody, today we are going to start the last module of this course. And in this

module we are going to touch upon a couple of important points which are related to design

automation internal architecture of FPGA, how they are used and also some of the pointers

for advanced topics like how bigger designs could be designed and what would be the

utilities or what would be the future directions for this particular course. So, in today's lecture

we are going to focus on FPGA.

(Refer Slide Time: 1:02)

So, the question which we are going to address is why what is FPGA, why it is used and what

is the internal architecture, what are the various design tradeoff if we would like to design an

FPGA. And also how configuration is done how, so basically about different tradeoffs like

fixed unit versus programmable units, fixed interconnection versus programmable

interconnection.

(Refer Slide Time: 1:33)

So, the first question we would like to understand is what is FPGA. FPGA stands for Field

Programmable Gate Array. Field is usually an electric field and programmable means, this is

a gate array which can be programmed using electric field or using electricity. So, gate array

which could be programmed or basically array of logic which can be programmed as any

other logic is field programmable gate array or FPGA.

Now, this was an early definition of FPGA like the acronym FPGA is used when it was

initially designed as a gate array, but slowly these gate arrays has become quite a

sophisticated programmable circuits, but still we call them FPGA. In general, we can call

these FPGAs are fine grain reconfigurable or fine grain programmable logic. So, this is also

in opposite to coarse grain programmable logic or coarse grained reconfigurable logic.

So, fine grain because each of the unit, basic unit is very small and it could be very small also

with respect to number of logic it can implement, number of gates it can implement. So, here

most of the time the smallest unit which can be programmed is a 5 input gate or 4 input gate

or a 3 input gate. And that is why it is called fine grain reconfigurable logic or fine grain

programmable logic.

Now, since it is programmable, so it should have two components programmable logic as

well as programmable interconnects. So, both of these things we have discussed in brief in

one or more of the previous modules, but let us for the sake of completeness, let us revise it

here also to understand what is programmable logic and what is programmable interconnect.

Here in this lecture, we are using configurable logic block also as a replacement or basically

to mean the same thing as programmable logic it is configurable logic block or CLB is being

used as a programmable logic in this lecture.

(Refer Slide Time: 4:10)

So, what is a programmable logic that we have seen earlier that, yeah, so before answering

this programmable thing, let us also understand why this FPGAs are used. So, FPGAs form

one of the implementation method or implementation way of implementation to implement

ASIC. What is ASIC? Application Specific Integrated circuit. Now, we have certain

applications, for example, in our last module last couple of lectures, we have taken an

application as a traffic light controller or bubble sort or GST computer.

So, any of such application, which could be algorithmic in nature or control based

application, so these application we would like to implement a specific integrated circuit or

one hardware for such an application. So, if we would like to implement specific hardware,

application specific hardware for that particular application, we call it ASIC. Now, let us say

we would like to design an ASIC, then and the finally, we as we discussed during the courses

or during the course, that finally it will boil down to implement using gates and gates would

be implemented using transistors.

So, this standard procedure of implementing digital logic using gates in transistors could be

quite an costly option. If number of units we would like to manufacture is low or we call it

low volume also. Basically number of units are less than it could be quite costly. Why?

Because generally, this chip manufacturing or hardware manufacturing can be modeled as

non-recurring cost into, sorry plus, non-recurring cost means a one-time cost, a non-recurring

cost plus number of units into recurring costs.

So, if number of recurring costs, sorry, number of units have less or the volume is less, then

this one-time cost being very high cost, could be, this could make this particular chip or this

particular hardware a very costly hardware. So, to reduce the hardware cost, the number of

units has to be increased.

So, you would ask this question now that what we see these days that every time a new

hardware is there, new mobile phones are there, it, the cost is decreasing day by day, but here

we are saying it looks counter intuitive that ASIC using transistors or basically if we are

designing a hardware digital hardware, then it could be a costly affair.

Since, it would be costly only if the volumes are less, because this one-time cost or design

designing the mass or setting up the design that that particular cost is very, very high or very,

very large. So, it runs into millions and 100s of millions or sometimes 1000s of million, but

the factor which can reduce the overall cost is the number of units, the number of units are

also in 100, 1000s or a million, then the cost of per transistor is very, very less and it is

reducing since years.

So, with every technology, the number of, the costs of transistor get reduced, but the overall

chip cost can be low only the volume is less. So, what if we have low volume and we still

would like to have an ASIC solution, then we can have FPGA as a cost effective solution. So,

FPGA will have, will be a cost effective solution because it is already manufactured chip and

we can use this chip to, this chip is programmable, so that any ASIC can be configured on the

same chip.

So, that is the most like that is the value proposition for FPGA that for it can be used to

program any application. And because they are manufactured in large volumes, so the cost of

one FPGA chip could be much lesser than the cost of an ASIC. So, now, why, there is still

one more question that why ASIC has to be designed and implemented? So, usually the

applications like any algorithmic application like you said sorting, searching or we usually

write a C program and these C programs or high level language programs are run on a on a

processor, processor is also a hardware.

So, that means these applications can use if they can run on a processor hardware called

processor, then what is the requirement of designing our own hardware for one particular

application? So, this itself is a is a big question to answer. So, the reason we would like to

have a specific hardware for one particular application is that application requires very high

performance, because processor hardware is generic. So, the whenever any application would

run on that generic hardware, then it will be slow in nature.

So, if we would like to have very high performance or basically we would like to execute the

same task in a very short time, then we would like to have application specific integrated

circuit for these applications. So, one popular example in these days is these machine learning

applications. So, the machine learning applications if we try to run on laptop processor even

for a simple inference of image it may take a couple of seconds.

So, on the other hand, if we try to design a specific hardware for the same application, it

could be done in a fraction of milliseconds. So, that is why this particular thing would be

required wherever high performance is required or some specific objective like low power is

required, then they are usually targeted or we would like to design a ASIC for a particular

application.

Now, so, again we are saying that, because, if we would like to design an ASIC and these

ASICs are in low volume, so the requirement is less, so then we can use FPGA as a cost

effective solution. Now, because of this particular requirement FPGAs are also used for

prototyping solution. Prototyping means that we would like to first see whether our idea

works or not.

So, whenever you would like to come up with a new hardware design, so rather than going

for our direct transistor based design, we many people would like to go for an FPGA solution,

so that they at least can prove to let us say funding agency that yes this idea works and that

way because the volume is less, so you would like to have only probably a couple of units to

show that this idea works.

And then similarly, if you would like to launch a product which has, which you would like to

just see whether that particular product would be able to survive its purpose or not, then

FPGAs could be used. Similarly, these FPGAs are also sometimes used as a emulation

engine, emulation engine means that you would like to, you finally would like to design an

ASIC, but FPGA can serve as a emulation engine, so that we can quickly simulate, quickly

emulate that or that final design and then we can use this FPGA for debugging or for

performance checks etcetera.

So, these are the various use cases why FPGAs are used. So, you will see, you will observe

that for a simple logic FPGA would require probably 8x to 10, 10 times more area it would

be slower also, but because they could be cost effective solution that is why FPGAs are

predominantly used in industry. Primly they are called as prototyping engine because they

can serve as the requirement to prototype a particular design.

(Refer Slide Time: 13:36)

Now, after understanding what why FPGA would be used, let us see that what is

programmable logic and programmable interconnect. So, these things we have already

discussed in previous lectures. So, let us quickly glance through it that we have seen that 2 is

to power N input multiplexer can be used to design any logic gate with N plus 1 inputs. So,

for example, this is my 3 to, 4 is to 1 mask and my input is A, B and C.

So, you can see that this particular design where 4 inputs this is 0, this is 0, this is 0 and the

third input is bounded to C. So, this design essentially works as, you can see this particular

design works as a three input AND gate. So, similarly, you can see that any for, so these

inputs could be like 0 and 1 and sometimes we can have the this also as a third input.

So, but when we are trying to design these we are trying to use these multiplexers in program,

as a programmable logic, then the combination which we use is that the input to all these

multiplexer inputs are only 0 and 1, the input signals are not used in, as input to this mask.

So, if you would like to use these marks as a flip flop or a memory cell then it would be

difficult.

(Refer Slide Time: 15:19)

So, what is typically done that we will have a specific flip flop or a memory cell assigned to

this. So, finally, how this 0 and 1 would be given, so 2 is to power N into 1 memory can be

used to give the N input, to give the, to make this configurable. So, this is also called lookup

table, this memory of 2 is to power N into 1 is also called lookup table.

Now, the address to this memory is essentially the input to our, our logic. So, let us say here

the example which we had taken A, B and C. So, A and B would be the input and the

memory content 0 0 0 1 etcetera, would be the content of the lookup table. So, now the data

of these memories essentially the truth table of that particular function.

(Refer Slide Time: 16:24)

So, now because sometimes we would like to have output which is flip flop based another

time we can, we will require output which is non-flip flop based. So, typical architecture of

programmable block is you will have an LUT lookup table and this LUT essentially means

that we would here the input to LUTs are 3. So, that means internally there would be 8 into 1

memory.

So, there are 8 memory cells and all these 8 memory cells are the lookup table, sorry, the

truth table for these 3 variable function and so with if we have this 8 into 1 memory, we can

program this LUT as any combinational logic with three inputs. So, there are two outputs to

this programmable block; one as the unlatched output, the other one would be the latched

output or output with a with a flip flop. Now, because here this is given as a mask input.

Now, there could be, this could be used as a simple mask, this if we gave another input d. So,

this d input can be used as a flip flop or it could be this flip flop can take input from the

output of the LUT. So, this way you we can, this particular programmable logic can either

implement any three input combinational logic or it can implement one d flip flop or it can

implement both one d flip flop as well as one 3 input non-latched output. So, this way one

simple programmable block could be implemented as a different type of logic.

(Refer Slide Time: 18:27)

Now, the second part is programmable interconnect. Now the programmable interconnect are

usually divided. So, this this terminology is usually, this terminology is borrowed from

Xilinx, but other programmable devices, other programmable FPGAs will have a similar

terminology. So, here we are trying to, in Xilinx they have two different types of

interconnect; one is called connection box another is called switchbox.

So, the connection box are simpler one which takes which connects input output of CLB's to

interconnect channels, while switch box connects vertical channels and horizontal channels.

So, how this thing will become programmable, how interconnect would become

programmable, it with the help of switch box and connection box and how do we say that this

particular wire should be connected to the another wire?

So, for that the, there could be different implementation, one of the popular implementation

so one implementation is fused gates. So, where you fused the wires, so that if that wire is

fused then it will get connected, one wire will get connected to the other way. The other

popular option is transmission gate. So, transmission gates can be used for programmability

of interconnect. So if the gate input of the transmission gate is 1, then the two wires will get

connected, if the gate input is 0, these two wires will not get connected.

So, the gate would be connected to some memory cells so that now using the that memory

cell, this transmission gate would be defining that which particular wire would be connecting

to which another wire. So let us try to understand with a with a diagram.

(Refer Slide Time: 20:18)

So, let us say this, the gray logic is a logic tile or a configuration logic block. And these blue

ones, blue squares are actually input and output ports. Now here we have taken a design

where input output could be on all the sides of my biologic tile or CLBs. Now, we see there is

a two requirement things, so whether let us say to connect different wires, so there are some

horizontal wires and there are some vertical wires.

So, if I would like to connect to my input output to these horizontal or vertical wires, I would

still require a certain sort of connection. So, these blue ones are the connection boxes, where

input output is connected to either horizontal wire or vertical. So, these crosses means that we

are in this connection has to be made. So, for example, this input, whether we would like to

connect to a vertical channel 1, vertical channel 2 or vertical channel 3, so that would be our

programmable interconnect.

Now, this particular connection is simpler in nature, we are calling it connection box. So,

where input would be connected to some of the channels. So, on the other hand, a switch box

would be connecting more number of wires, there would be some horizontal wires, there

would be some vertical wires, it would like to connect to these horizontal lines as well as

vertical wire.

So, the idea here is that this one of the input let us say this input should be able to connect to

any of the 3 plus 3 plus 3 any of the 12 inputs 3, sorry, 9 inputs, this input should be able to

connect to any of the 9 inputs. Similarly, all the inputs are able to connect to all other 9

inputs. Now, one thing to notice here that if we are using switch boxes, it does not matter

whether input is connected to output or output is connected to input.

So, for example, this is a input connection and the red ones are the output connection. So, this

input connection can also be connected to the output connection or some of the other wires.

So, which means that when we use, when you use transmission gate, they are essentially, they

essentially become wired. So, the concept of direction is not there. So, it is not that the

voltage can only travel from this point to this point.

So, reverse is also true, if this is connected, so this can also give signal to this. And similarly,

basically here connection could be both ways. So, this diagram has been taken from a tool

called VPR Versatile Place and Route. So, this is a is open source tool, which has been

designed to study or to explore how input output connections could be done in an FPGA. So,

a typical switch box is connected like this, for example, this wire could be connected to wire

number 1 of this, wire number 1 of this.

So similarly, all the connections can be made. So all the possibilities are there that each wire

can be connected to any other device. So, you can see the switch box could be quite

sophisticated in nature and there are still, there is some more tradeoffs to this.

(Refer Slide Time: 24:16)

So let us say, yeah, this gives more bigger picture. Now here, the number of channels are also

quite large. So here are 6, 7, channels 7 channels are there. 1 2 3 3 plus 3, 7, so seven

horizontal channels, are there 7 vertical channels out there and the switch box is connecting

all these horizontal channels to vertical channels.

So yeah, so more specifically, here you see that rather than connecting all of them to all of

them, it is connecting channel number 1 to channel number 1 here. Yeah, similarly, the same

thing we are seeing here also. So, let us say we would like to connect some logic from one

place to other place. So, let us say this red connection is first connecting it to, this using the

switch box it is connecting to one of the vertical wire and this vertical wire is connecting

using the switch box to one of the horizontal wire.

And because this wire can also connect to this another vertical wire, so this way, this input

this output is going to input of this particular LUT or this particular logic tile or CLB

whatever you can call. So, this because of this configurable connections, any of the logic tile

or CLB can connect to any other logic tile of CLB, sometimes we will feel that the number of

channels, number of wires which are required could be huge or could be, the number of

channels required or number of wires, number of input and output in connection switch boxes

could be quite large, but that is the requirement for programmability.

(Refer Slide Time: 26:16)

Now, if we would like to design our own FPGA or whenever somebody would like to design

an FPGA, there are various issues which he has to think over. The first thing he will, the first

design question would be that how many number of inputs in LUT should be there. So,

should it be low in numbers, so for example, should it be 3 input LUT, 3 input LUT means

that inside there would be 8 memory cells and or it should be 4 input LUT or 5 input LUT.

So, you see if the number of inputs in each LUT is less, let us say 3 or 4. So, what we would

require is we would require a large number of these LUTs. So, but the issue or the difficult

part is that any large circuit need to be decomposed into smaller circuits. So, let us say if we

have to design we have only 4 input LUTs and we would like to design 4 is to 1 mask. So, 4

is to 1 mask would require 6 inputs.

So, then we will have to decompose this 4, 6 inputs into a logic which would require all the 4

inputs the number of LUTs required would be quite large, but the resources would be a

heavily utilized. So, on the other hand, if the number of inputs are large, for example, let us

say 6 input LUT or 7 input LUTs, what would happen in that case? Any function which

require only 2 inputs or 3 inputs, most of the memory content would not be required, many of

the inputs will not be required. So that way it would be sheer wastage of hardware resources.

So, this is one thing, the other thing is that whenever we are designing using FPGA or we see

closely the implementation of these configurable logic blocks or logic tiles, then we see the

for implementing even a very simple gate like AND gate or an OR gate you require a

complete logic type or a complete configurable logic block. So, this logic block, how can we

improve the utilization the improvement of utilization can be done if we can have some fixed

logic.

So, rather than using a programmable logic, if we use some of the logic as a fixed logic, then

it could be quite efficient, but then it loses its own objective that hardware has to be

programmable. Still to meet some performance goals, we would have, we would try to have

at least some logic which is quite popular.

So, for example, if we are designing an ASIC and we try to see different application where

this FPGA could be used. We see that addition is one circuit which is quite popular, which

would be used in in almost all the applications. So why not to design an fixed logic for fixed

logic for some components, which is quite popular or is to be used in in most of the circuits.

So there, so that means there could be some programmable part, there could be some fixed

logic. What logic should be used as a fixed logic is always a question or is a tradeoff.

(Refer Slide Time: 30:01)

So, similarly for interconnections, the choices are even more difficult even more varied. So,

for example, how logic blocks should be arranged, so whether they should be arranged in a

2D fashion or whether they should be arranged in a single line, how many logic block in each

of the row or a column and how many wires should be there. So, we in some one of the

previous slide we talked about horizontal channels and what vertical wires; horizontal wires

and vertical wires, how many horizontal wires should be there?

How many vertical wires should be there? That also determine what is the size of switch box

or connection box we would like to have. So, you we see that some of the wires are our local

connections. So, basically you would like to connect the output of one of the logic block to

the input or the other logic block while some of the connections are large fan of the nature,

that one of the output would like to go to multiple of the inputs of different logic block, while

some different kinds of wires would be global in nature or semi-global in nature where one

other circuit is going to all different kind of logic blocks.

And sometime the connections between two blocks could be far. So, basically they are, the

wire which you would like to connect from one particular unit to other unit, the other units

are spaced quite far, some of the units are spaced quite near. So, these are all different kinds

of issues so which also give a question whether the wire should be distributed uniformly or

non-uniformly?

So, that or could it be possible that some of the wires could be long wires or some of the

wires could be short wires or all these connections, all these become the design questions that

how should we design these internal wires interconnections? Now programmability is also an

interesting question here.

So, whenever two wires get connected using a past transistor or this past logic, then it always

slow down the buyer. So, basically whenever you are giving 1 and using a past transistor

logic, you are trying to pass this on to the other end. Because this past transistor, internal

structure of the past transistor, it would the wire is much slower then the non-programmable

wire or a direct wire.

So, that is why we will always think that if there are some connections which are more

frequent, can we directly connect them or can we make certain connection as non-

programmable, we provide that yes this non-programmability would always give the, give

benefit in terms of latency or wire delays. So, this programmability and choosing between

which wire should be programmable, which wire should be non-programmable is a good

question.

Now, some of the global logic for example, a clock and reset has to be travel across all the

logic blocks. So, there may be some non-programmable wires for those purposes also. So,

how specially input and output need to be organized. So, in our previous for example

diagrams we have seen that on all the four ends of logic tile or logic block there were inputs

and outputs should it be there all the way or how they should be connected? These are all

design questions for interconnection.

So, yeah global signals we have already talked about that there are some global signals where

special wiring would be required, which will usually be non-programmable in nature. Now,

after all these designs then we can, so that also gives us the clue that there would be different

FPGAs for different kind of applications or different requirement, based on the requirement

different interconnects could be designed, based on the requirement different kind of logic

block could be designed.

