
Digital System Design

Professor Neeraj Goel

Department of Computer Science Engineering

Indian Institute of Technology, Ropar

Lecture 46

Verilog-Behavior Model-2

(Refer Slide Time: 00:15)

So procedural statements are very similar to the statements we have in high level

language like C, C plus plus. So, for example, we have this if and else statements. In case

of if and else, we have, for example, we can write if and after that we have can a logical

expression. So, based on the result of the logical expression, we can assign the output or

we can have any kind of a statement here. So, this statement could be a logic expression

or it could be a, it could be any behavioral expression.

But the important point here is that in the parenthesis there would be a logical expression.

So, logical expression means it would be either conditional statement, less than, equal to

or more than or it would be a, it would be logical an, logical or, those kinds of statements.

So, for example, this statement means if enable, if enable is 1, then out would be assigned

as in. So, because, we are using if statement and because we are using this equal to sign,

this will become a blocking statement. So, this is a blocking statement and after that if we

are using next case, then this will also be a blocking statement. So, in this type of, even

though there is no else, then also it will work.

Now, the other possible example is let us say, we have more than one statement which we

would like to write in this if block. So, in that case, for example here, we are saying a

number queue is less than DEPTH. So, this is a logic expression. if this expression is true,

then for binding multiple statements or multiple expressions, multiple statements, then

we have to use begin and else, being and end.

So, in C plus plus, we use curly braces. Start curly brace and end curly brace. Here, we

are using being and end. Nothing else is different. So otherwise, the syntax is very similar

to the C syntax. The other thing which you can also see, for example here, we are seeing

number queue is equal to number queue plus 1. So, that means, we do not have that

incremental operation, operant here. That urinary operator is not there so that is why we

have to write exquisitely that number queue is equal to number queue plus 1.

Now, let us say if we would like to have if as well as else, so either it could be nested or it

could be a non nested one. So, in case it is nested, then we can write if, then the

expression, then statement corresponding to that, then else, after that we again have to

write if. You can see, this particular syntax is also quite similar to the syntax of C or C

plus plus. The only difference is that if we have multiple statement in this if block, then

we will use begin and end otherwise there is not much other difference. In the end of this

logical if else ladder, so we can end the ladder by else.

So, another comment here that this if else ladder or if else case, you can also see that it is

also very similar to priority, if you are designing something like priority encoder because

this if is going to have highest priority. if this condition is not true, then only you are

going to the else condition and then you are checking for the next logic comparison.

So, using this if else, if, if, else, if statements then we can also create something like, if

we have to design something of a priority conditions, then that can be designed using if

else statements. So, this is about if else conditions and sometimes we would also like to

have multiple wave branches.

(Refer Slide Time: 04:42)

So, in multiple wave branches, we can use case statements. Case statements are also

similar to our C statements. So, we have to write case and then the variable which it is

controlling. So, whatever is the variable name we are writing, then there would be case

items. So, these case items would compare the value of control or value of this variable

and compare with all the values and then we will keep on, then we will write the

statements corresponding to that particular comparison.

So, for example, here, we are seeing case alu control. Alu control is a variable which is

deciding our switch case. Now, if the value of Alu control, which is a two-bit signal here,

so if the value is 0 0, then we are seeing y equal to x plus y. If the value of this control

signal is 0 1, then y equal to x minus y. And then 1 0, y equal to x plus 1. If it is 1 1, then

we are seeing y equal y plus 1.

So, these statements could be anything and again, if we would like to have multiple

statements then we have to use begin and end. So now, you can also ask this thing that if

it is a two-bit control, if alu control is only a two-bit variable, then if we have covered all

the cases, 0 0, 0 1, 1 0, 1 1, then should we write a default here or not? So, default means

when any of these cases is not matched, then what should be the, where should we go or

what should we do?

So, in that case, it looks like here there is no default statement required but default

statement is required or essential because of the type of variables we have. So, you see, in

case of Verilog, any particular bit or any particular wire can take four values, 0, 1, x and

z. So, if the value of alu control is let us say x x or basically unknown, then what should

be the output? It should depend on the default case. And then all the case items are done,

then we have to write endcase, so that we can switch or basically close this case block.

So, the case block can be utilized to design multiplexes. So, for example, this is a kind of

a multiplex where we are deciding, based on the control, we are deciding what would be

the output. So, this we have already discussed that in the multiple statement, we have to

use begin and end for that particular item and default also, we have understood, we have

seen that because there is a possibility of x and z.

Now, one more thing here, that, so there is some more advanced case statements. It is

called case x and case z. So, in case of case x, what sometimes, for example, we would

like to have a do not care condition. So, let us consider this case itself. So, we would like

to have a three-bit control. In the third bit, we are seeing that either it is 0 0 0, or 0 0 1,

then we have to perform this operation. Then instead of writing both the case items, we

can write 0 0 x and then y equal to x plus y.

So, which means that, and now, the third bit is taken as a do not care. So, in case of case

z, wherever we would like to take do not care, we can write z there and wherever we like

to have a do not care, then we can write x in the case of case x. So, this case x and case z

could also be used if we have a larger case, cases and some of the case items can be

combined because some particular bits are do not care there. So, this case is also a good

mechanism to essentially a multiplexes or de multiplexes.

(Refer Slide Time: 09:07)

Now, the other set of statements in procedural, procedures are Loops. So, there could be

multiple types of Loops. While Loop. In case of While loop, we write a condition, we

initialize and after that we say that this loop will keep on running until this condition is

true. So, for example here we are saying While count is less than 128, then, we will keep

on running this procedure.

If count is 0, so that means we have to initialize it to 0 and after that we can have this

While and then expression, logical expression. Until this logical expression is 1, you will

keep on rotating in this loop. Again, if there is only single statement, begin and end, this

begin and this end is not required but if the number of statements is more than one, then

we have to use begin and end. So, here we are saying count equal to count plus 1 and

then we are displaying.

So, similar to While loop, there can also be a For loop. The For-loop syntax is exactly the

same as the syntax in C. So, you can write For and then initialization part and after that,

your logical expression and then you can have the increment part also and decrement part

also. The only thing is that the urinary operator is not there in values. You have to write

count equal to count plus 1, or something similar. Because there are only single

statement, I am not using begin and end, I can write the singe statement as the way it is.

So similar to While loop and For loop, there could be a Repeat loop here. So, in Repeat

loop, we know the constant number of times when we are going to repeat a particular

loop. So, we can, now in, the same thing, the same example we are writing in terms of

repeat loop. So here, we are specifying like a constant that how many times we would

like to repeat this loop. We can say Repeat and that number, how many times we would

like to have this particular block repeated. Then we can have begin and end and then the

list of statements which we would like to get repeated.

Similar to Repeat loop, there is another one which is called Forever loop. So, in Forever

loop, we can, there is, this value of repeat is essentially infinite. It will keep on running.

For generating signals like clock, this could be used. For example, we can say, it could be

written in initial clock. We are initializing some value and then we can say Forever.

Every time, or this will keep on executing that after 10 units of time clock is equal to not

clock.

Now, again, you will say that does this Forever mean that this will keep on executing?

Actually, yes. But what will stop? So, let us say, if you are writing anywhere in your test

bench or anywhere in your design that what is the condition you would like to do dollar

or finish. So, if you specify that after so many numbers of cycles, I would like to do

dollar finish, then the execution or simulation can finish.

The other thing is, you can also have some sort of a logical expression and say that when

this particular logical expression will happen, then you can assign a dollar finish. That

means your condition, for example, you can have some application, let us say you are

doing sorting. So, whenever this sort will finish, then you can generate a signal and you

say that when this signal is 1, then I will do a dollar finish or I will finish my simulation.

So here, for simplicity, because we do not know how many times or what should be the

number of cycles that it will take, so we writing, for simplicity Forever. But in some

other block, we are writing a dollar finish according to when the simulation should finish.

So, these were the major or important procedural statements.

There is also a possibility to create functions in Verilog but for sake of simplicity, I am

not covering that and the kind of assignments or kind of Verilog programs we are going

to write in this course, they would not be required. These statements would be more than

sufficient to design most of the logic. So, if you want to explore more, you can go into

tutorials and read books and see that what could be the other statements which you can

use. But more or less, whatever statements we have covered, they should be sufficient in

most of the scenarios.

(Refer Slide Time: 14:20)

So now, let us take couple of examples at how we can use behavioral modeling. So, we

have already seen multiplexer to certain extent but let us do it again. So now, I would like

to model a multiplexer using behavior model. In case, I would wanted to model of

multiplexer in structural model, then I will start will And and Or and then I will list all

the logic where it has And Or. Or in case of data flow modeling also, I will find out all

the conditions, then my out would be 1.

But here, we can write it using a case statement. My modules definition would be similar

to any data flow model or a structural model. I will specify that what is my output, what

are my inputs, then I have to specify my ports that output port and i0, i1, i2, i3, s0 and s1

are the select inputs, so overall, these are the input.

Now, because we are planning to use behavior model and we know we are going to write

on to out, so we have to specifically specify that this out is actually a register or reg type.

Although we have defined it as output but in addition to that, we have also specified that

this out is of type reg. So, if we do not specify then it would be assumed as a wire which

it is not because we are going to write it in a procedural statement. So, we have defined

out as a reg type and then we have to define an always block.

And in the always block, we can write a case statement. So, in the case statement, we are

catenating s0 and s1. So, we are using this parenthesis operator which is a catenation

operator. Now, s0 and s1, both, together is 1 variable against which we are checking all

the values. It is a two-bit variable, it become a two-bit variable.

So, if that two-bit value is 0 0, then we are saying out equal to i0, if two-bit value is 0 1,

we are out equal to i1, similarly, when two-bit value is 1 0, then we are saying out equal

to i2 and when two-bit value is 1 1, we are saying out equal to i3. And when it is none of

them, when we have to say that because we are not, so that means, what does it mean? It

means either of s1 or s0 is x or z because my control input to my, my select input to my

multiplexer is not known so that is why it is good to say that out is equal to unknown. So,

out is also unknown if we, our select is unknown.

Now, the question, when should it get triggered? We would like to get this particular

block triggered, whenever there is a change in s0, whenever there is a change in s1 or

whenever there is a change in i0, i1, i2 and i3. So, for example, s0 and s1 is not changing.

But i0 gets changed. So, there is a possibility that s1 and s0 value are 0 0 and then

whatever is the value of i0, that should be given to output.

So, that is why my sensitivity list or the list of variables when it will get triggered should

be all, s1, s0, i0, i1, i2, i3. So, these are all right-hand side variables and in short, we can

also write at the rate, parenthesis and asterisk. So, this asterisk or wildcard means that all

the variables which we are going to read would be in this sensitivity list. So, when any of

these variables will get changed, then we are again triggering this particular always

block. So, this is how we can model multiplexer.

(Refer Slide Time: 18:46)

The next example could be the D flip-flop. So it’s an example of a sequential logic. So,

before going to D flip-flop, let us start with the D Latch. Latch means it is a level

sensitive and in addition we are also saying it is asynchronous. So, my gated value here is

clock and reset is my asynchronous. So, what I can do is, I can write… always at the rate

reset clock or d. So, whenever there is a change in reset, whenever there is a change in

block and whenever there is a change in d, this block should get triggered.

So, what does asynchronous reset means? That whenever, so this has the highest priority,

so whenever a reset is 1, we have to say that q, my output is going to be 0. So, we also

have to remember that because we are writing q, this q should be of r e g type, reg type.

So, whenever reset is 1, then output q would be equal to 0.

So, remember that, if there is no change in the reset, then only we will go to the next

block, means else of this statement but if there is a change in reset and reset is equal to 1,

when we are not even going to the next, any of the next statement. So, this is how priority

will get decided and that is how we have to write and that is how reset has got higher

priority than d or clock. So, if reset is 0, so that means, then now, we have to see whether

clock is 1. Clock is a gated signal here, if clock is 1, then q equal to d. if clock is 0, or my

gated signal is 0, that means my q is going to remain as a precious value.

So, in summary, we are able to write a behavior of my D latch, we can summarize our D

latch behavior that if reset is 1, then we are saying my output is 0. In case reset is 0, then

we are checking what clock, if clock is 1, then q is equal to d, if clock is 0, then q is

actually the previous one which we are not writing here but it is implicit. So now, let us

say we would like to have an edge triggered flip-flop. So, the major would be there in the

edge triggered flip-flop is in the list of the events we have to write positive edge or

negative edge of the clock.

So, let us say we are writing positive edge of the clock. Because we have asynchronous

reset, so let us say the reset is level low, is active low. So, if it is active low, then we have

to write negative edge of the reset. Why we are writing negative edge of the reset?

Because whenever negative edge is there, then only the possibility of reset being 0 would

be there.

So, if there is a negative edge of the reset or there is a positive edge of the clock then this

Always block will get triggered. So again, because reset has, is asynchronous and that

means it has higher priority so if reset is 0, then we are saying q equal to 0 or output

equal to 0, else we are saying q equal to d.

So, you see, we are not writing if clock because positive edge of the clock will make sure

that my clock is at this positive edge transition and it would be 1, when this d value

would be taken before the positive edge and it would be assigned to q and q will remain

there for one clock period.

So, this is how we can design a D flip-flop or model a d flip-flop and because we are

writing this always block at the rate posedge clock and negative reset et cetera, so

synthesis tool has, is able to, will be able to identify this kind of a syntax and it will be

able to act accordingly, whenever this kind of a syntax is there so, sort of pattern

matching would happen and this would be synthesized as a flip-flop in case of a hardware

synthesis also.

(Refer Slide Time: 23:44)

So, let us say, we would like to design a, design a counter. So, this is another example. So

now, again I am writing complete modules so, module, the counter module will have

three inputs, two inputs and one output. Output is q, let us say it is a four-bit counter so,

and there would be another input clock and another input is clear.

So, the functionality, let us say, is that whenever clear is there, then counter at start at 0

and otherwise at every clock, it will keep on incrementing. What would happen if four-bit

value of q is 1 1 1 1, then the next value will become 0 0 0 0. So that is the overall

behavior of counter.

So first, we have to define the module and then we have to say the output is equal to, the

output is q and we are defining input also. And because, here, during the definition of the

module, we are not specifying how many bits but then we are specifying output port or

input port, then we explicitly say how many bits are there in the output or input.

Now, since q is the output and because it is being also written in an always block we have

to define it as a reg type. So again, let us say that this particular block is, this particular

counter will get triggered, whenever there is a negative edge of the clock or, and my clear

is actually active high.

So, because my clear is active high, so I can say always at the rate posedge because after

posedge, there would be, clear would be 1. So, when we are saying so, then we can say

that because if clear is 1, then I need not to think about clock so I can say if clear is there

and clear can be there only if there is a posedge. So, only at that particular point of time, I

will trigger this clear thing and if clear is there after positive edge then I can assign my

output q to 0.

So, you remember this syntax that we are saying that my q is four bit but here, the

specification here, or basically representation here is decimal type. So, we are not writing

in binary, we are not writing in hexadecimal, we are writing in decimal. Now, in the else

case, because there is no posedge of clear, the only other condition left is the negative

edge of the clock so at every negative edge of the clock I am just going to say q equal to

q plus 1.

Now, you can see here that I have used a non blocking statements here, non blocking

assignments. So usually non blocking assignments are used, are usually preferred in case

of, in case of flip-flop or flip-flop like structures and they are also preferred whenever we

are trying to model a data flow or a combinational logic. So, this whole procedure, we

will be able to have, we will be able to count whenever there is a negative edge of the

clock. So, we can end the module by end module. So, this is how, we can use this

behavior modeling and we can summarize our lecture.

(Refer Slide Time: 27:32)

So, we have seen behavior modeling in this lecture and we have also seen more powerful.

Maybe, one question will be arising in your mind that why, why we were not taught

about this, behavior modeling when we were talking, initially about Verilog? So, and

why it was not recommended or when it was recommended?

So, essentially, this behavior model can be used for data flow modeling. Sorry, this

behavioral model can be used for combinational logic, for sequential logics as well as for

test benches. But we have not preferred, or we have not toughed the behavior model till

this particular assignment because, it would be more efficient, it would be more

appropriate to use behavior model whenever we are modeling sequential circuits.

When we are using sequential circuits, we do not have alternatives, we have to use

behavior model because to implement D flip-flop or any kind of a memory structure,

behavior models are the most appropriate ones because you have this reg type which is

internally defined. This reg type essentially can hole two different values. One is the

current value, another could be the future value, while wire cannot have two different

values. So, the previous value will get erased.

So, that is why it is usually good to have behavior, whenever we are using sequential.

Whenever we are modeling sequential circuits, it is good to use behavior models. For

combinational logic also, we can use behavior model but during synthesis we are not sure

what we are doing. And another biggest catch is that whenever we are using behavior

model, we tend to write, like a C program. However, if we are modeling a hardware, we

have to visualize, we have to write on paper what my hardware module is going to be.

What kinds of operations will be there, how many cycles it will take, et cetera.

So, all of those things can be done if we are using either combinational, either if we are

using structural model or data flow model. When we are using behavioral model, we tend

to skip those details and we tend to write in a, like a C programming way. The other

disadvantage of using behavioral model without thinking much, is sometimes, some of

the construct is not synthesizable.

So, finally, when we are going to design a circuit or when we are going to synthesize it

on that pg et cetera, so in those cases, it will not give the desirable result. We may be

expecting, for example, a multiplexer but it may be designing something else. So, the cost

may be different. Because we are leaving it to our synthesis tool that what to infer.

So, I would suggest to use judicially that when should we use behavioral statements and

when do we use data flow and structural statements. The ideal would be to use a mix of

them. So, sometimes we can use behavioral statements and, so for example, designing

flip-flop, we do not have options. You have to write behavioral statements. But we can

design some basic modules and when we connect those modules again using structural

model and their, all the assignments require to be continues when we use data flow

assignments.

So, this is about different kind of statements, different kind of modeling styles. So, if you

require any more help in your assignments while doing and maybe, some more constructs

or maybe confusion in some constructs, so any of these links could be a very helpful

means. Asic World has a very good, nice explaining method and they also give a lot of

examples. And Tutorial Point, as well as Java Point also have list of topics.

Mostly, what I have observed during my experience is that books may not be a very good

idea but these online methods because the language is like we use. They are quite

extensive and there could be quite small scenarios or corner cases which may not be

covered in the books but these tutorials can help you quite a lot, whenever you are

dealing with any particular point. So, with this, I would close this, today’s lecture. Thank

you very much.

