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Multiplication 

Hello everyone, in our previous lectures we have seen how to do efficient addition and we have 

seen multiple ways of doing it and from those additions we have learned some new design 

techniques also. Today, we will extend that idea we will see how multiplication can be done in 

using logic gates or using Boolean logic for a digital logic.  

So, in this lecture we will focus on multiplication as well as what are the issues in regular or in a 

Naive multiplication how we can make it faster. So, then we are discussing techniques how to 

make it faster than we can also see some new design techniques. 
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So, a regular classical multiplication is essentially a two-step process, first multiplicand is 

multiplied with each bit of multiplayer and each partial product is shifted by one place, so this 

way we got series of partial products and finally those partial products are added, so we can say 

there are two steps one generation of partial products and then second one is additional partial 

product.  



While generating partial products, let us see this example of 4 plus 4 multiplication, so we each 

partial product is shifted by one place, so the shifting essentially means that to which place of 

multiplier we are multiplying it. So, now multiplier if we are multiplying with the 0th bit, so that 

means the partial product is at the original place, but when we are shifting, when we are multi, 

when multiplier is at two’s place then the partial product is shifted by one place towards the left.  

So, similarly when we are multiplying with this one, then the partial product is shifted by two 

place two places towards the left. So, this ways of all the partial products are come up are 

obtained and then finally we add all of them. Now, if we use a simple addition then so we also 

see that the total number of bits in this multiplication process it is like proven that if the 

multiplicand is N bit and multiplier is M bit the total bits in the sum would be N plus M bits.  

So, this N plus M bits are sufficient to represent any result, for example if my multiplicand is 32-

bit multiplier is 32-bit the total result would be 64-bit, will never be more than that. So, to do this 

multiplication using digital design or digital logic, so the way we can do is we can as we have 

discussed in our previous lecture so we can do addition of two partial product and then whatever 

is the sum then we can add that to the third partial product and then we can add it to the fourth 

partial product so and so forth.  

So, total number of N minus 1 adders would be required and in a worst case the size of each 

adder would be N plus M, in average case it could be little less by properly sizing it, so for 

example first addition we can say that the size could be 4 plus 5, 5 bit addition can be done then 

6 bit addition 7-bit addition so and so forth. But yes, the coast looks huge in worst case as well as 

if we try to reduce it by proper sizing then also it is substantially larger.  

So, how to make it better because multiplier is like addition multiplier is also a fundamental unit 

used in almost all kind of designs for example, when we write C program we never think twice 

whenever we need to do multiplication. So, we consider that as a cheap operation, cheap means 

that it is probably will consume less time less area but yes looking this it looks like that my 

multiplication is going to be at least one order if it is N bit multiplication it is going to be at least 

N times more costlier than then addition.  
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So, how can we do better? So in our last lecture we have seen carry save adders can we use that? 

Probably that looks like a very wonderful idea because in carry save adders has multiple 

opponents were there and we were heading those multiple offends and we were doing this carry 

save thing and carry propagation was done only in the last stage.  

So, but in our last lecture when we were studying about carry save adders so, this carry save 

adders looks like a special case and also each time we were doing some like combinations were 

created you know in a special way so you know ad hoc way, so can we do it in a more systematic 

manner? So, let us try to see this with an example of 8 plus 8 multiplications.  
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So, in and 8 plus 8 multiplication this carry save adder will work only in the second step, the first 

step where we are generating partial products carry save adder is not going to help there, but 

once partial products has been generated after that it can help in addition fast addition of all of 

them. Now, let us see we are doing it goes 8 plus 8 multiplication and each of these dot represent 

1 bit of the partial product.  

So, this first row will represent first partial product, so because it is 8 plus 8-bit each bit would 

be so each bit of my multiplier would be multiplied with the multiplicand, so these 8 bits I will 

reserve this 8 bits, similarly when the second bit of multiplier would you multiplied with 

multiplicand then this row would be obtained.  



So, similarly I would have such 8 rows and each of these 8 rows represent my 8 partial products. 

Now, I need to add all of them, to add all of them and also I would like to use carry save adders, 

so to use carry save adder what should I do? I have to identify that which bits I can add in 

parallel. So, we see that here these 2 bits are actually of same order or same power or denotes 

same place.  

So, we can add both of them and similarly these 3 can be added because they again belong to the 

same place, so similarly all these 3 can be added together. So, like this you can also add all these 

3 bits in this particular these 3 rows and these we are leaving because the fundamental method is 

the fundamental method which we are using to create these groups is that if number of rows or 

number of dots number of wires I can say are more than let us say multiple of 3, then I can make 

group of 3.  

So, what if it is more than 3 more than let us say for example, here it is 8, so we are leaving these 

2, so that we can use them in later steps. So, this way we are creating all the groups and the 

groups are created based on equal powers. Now, after doing this grouping now each of them this 

would require an half adder this would require an half adder and these bits would require some 

full adders.  

Similarly, these bits would require full adders, so all of them would be added and every stage 

these 3 would be now for example for this addition I will generate carry and a sum, sum would 

be for this place and carry would be for this place. So, this way what we can see that if we see 

the result of this first stage, let us call it at the stage, so in the first stage, we have grouped these 

many groups and the result of this group would be this stage.  

So, for example there were two dots here, now this is the sum these they carry part, carry part 

would be in the in the next group. So, similarly a 4 all others now there were 3 bits here, so these 

3 bits converted into 2 bits, so this say this is the result of stage 1, where we are able to eliminate 

these dots, so essentially what a carry save adder is doing for us that it is removing, so instead of 

adding 3 numbers now it will reduce them to 2 numbers sum and carry will carry would be in the 

next order and sum would be in the same order.  



So, let us try to see it closely enough we will keep flipping the slide from previous slide to this 

slide to understand how this step has been done. So, you see that there were 3 bits here, so these 

3 bits the sum would be here and the carry would be in the in the next group. So, some is here 

and carry is here, so similarly for this group sum would be here and carry would be shifted to the 

next place.  

So, sum would be here carry would be shifted to this place, so to make things easier we have 

shown in 2 different rows, but essentially they were old belonging to the same row. The only 

thing we have to understand is that each sum each of the sum each of these full adder will return 

sum and carry, sum would be would result in the same column, but carry would be given to the 

next column.  

So, similarly for these also the sum would be here and carry is here sum is here carry is here, so 

1, 2, 3, 4, 1, 2, 3, 4, so total 8, 1, 2, 3, 4, so total 8 additions were there because of those additions 

we are essentially able to eliminate one whole row, so we are able to eliminate this row, we are 

able to eliminate this row, so after one stage of addition instead of 8 rows now we have 6 rows. 

So, now we can reorganize this result, so for example, we can shift this dot from here to here we 

can shift dot this dot from here to here, so we will reorganize it looks something like this.  

So, we will have total of 6 rows and now again we can go ahead and group them, so we can find 

out in this stage 2, after rearranging how we can do additions, so we can group these two, we can 

group these three, so you will see that we are able to do sum 8 additions here the same 8 

additions we can do here also. So, we are leaving wherever single loads are there because they 

can be added in the next stages. So, again after doing this addition total number of rows would 

reduce from here, the number of rows are 6, so these 6 rows would reduce to 4 rows essentially.  
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So, we have removed all of them similarly this particular row is eliminated now this dot we can 

move upside, so if we rearrange them after rearranging, so after rearranging this will become 4 

rows. Now, this is the result of stage 2, after this stage 2 again we can reapply our carry save 

additions, in this carry save addition we can again form this the of group of 2 this is the group of 

2 this is the group of 2 and now these are the groups of 3.  

So, these additions we can go ahead and perform and after this addition now these 4 rows would 

be reduced to 3 rows. And these 3 rows again we can rearrange so that we can perform the 

addition again. So, what you are observing that there are multiple stages we are doing multiple 

additions and after each addition some rows are getting eliminated.  

So, after this stage 4 again we can go ahead and perform these additions, we can form wherever 

we can form groups. So, after forming additions like now these 3 rows has been converted into2 

rows, this is the result of stage 4. So, after stage 4 now this is essentially the last stage and this 

last stage what we had to do we will not use carry save adder but propagation has to be done.  

So, each time, so for example addition of these 2 bits would be given would be giving carry to 

this this addition and similarly addition of this carry, additional these 3 bits would be given as 

input to this addition, so essentially carry would propagate now, so in this last stage, it is a carry 

propagate adder. So, the design of adder would be like a propagating carry where every stage 

every set of bits would be giving input in the next set of bits.  



So, now the delay of this 5th stage is essentially equal to a carry propagate adder, carry 

propagate adder. Now, if we see the overall delay, so because before these they were 4 stages, 

these 4 stages were consuming 1 adder delay, the worst case was 1 adder delay, the total number 

total amount of delay I can say here would be essentially equal to approximately order of N. So, 

because of the previous 4 stages now I need not to do any kind of addition for these 4 bits, for 

rest of the bits, yes I need to do addition.  

So, if 8 cross 8 multiplication is resulting in 16 bits, so I would require this addition 12 full adder 

additions here and the 4 additions has been done in 4 different stages, so the total delay is of the 

order of N, or basically N plus M. So, if I have a multiplier which is, which has multiplicand of 

size N and multiplicand of size M, so the total delay is going to be N plus M of the order of N 

plus M.  

So, what would be the impact of number of adders? Number of adders would also reduce 

substantially because we are playing smart here wherever addition wherever number of bits are 

sufficient then we are adding otherwise we are not adding, we are also leaving to the next stages 

so that we will have a sufficient number of bits which can be combined together. So, this forms a 

very efficient technique of multiplication this is called Wallace tree multiplier.  

So, in this Wallace tree multiplier, the group of additions are created in such a way that the 

number of stages are less, what are the number of stages? The number of stages are 

approximately log n, so how do you come to this fact of Logan because after every stage ideally 

we should be able to remove or basically reduce the number of rows into 2 by 3.  

After every stage because the number of stages are reduced to 2 by 3, so if my addition is very 

very large, so the number of bits are very very large. So, the number of stages would be low of 

the order of log N. And then finally in the last stage, we are going to add them in a in a carry 

propagate manner, so the delay is always going to be of the order of N full adders. So, this looks 

good.  
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But there are still some challenges or some issues in this Wallace tree multiplier or multipliers 

like them. So, first the issue is that you have a very irregular structure. So, if we have seen that 

every time you require to do addition, so you do not know so basically you have to lay out you 

have to fix all these bits and you should know in every addition that which particular bit you 

would like to connect to.  

So, you would require N number of adders, different number of adders in every stage and every 

stage would require different kind of interconnect also. So, it is not very regular, it is not that 1 

bit is always going to the next adder, so the overall technique is not set to be layout friendly, 

layout friendly means that it is not rectangular in nature, so in some particular stages number of 

adders are more in some other adders are less.  

So, to this irregularity problem and layout issues and irregular interconnect issues, some people 

have provided our different kind of a tree structures, like in Wallace tree the structure is 

different, there are other trees where the structure is more uniform, so that the number of 

additions could also be minimized number of full adders requirement can also be minimize 

people have, so this Wallace has been proposed some 50 years back.  

So, in last in last 50 years people have done meticulous calculation that which particular creation 

of which particular group will lead to minimum number of full adders or minimum number of 



half adders. So, with those calculation number of full adders could be minimize plus integrate 

can also be minimized by creating more a regular structure rather than a haphazard structure 

where any bit could be added to any other bits.  

So, with those yes, this Wallace are still the kind of fastest multiplier or a tree base multiplier I 

would say is tree base multiplier will carry save adder base multipliers are still the among the 

fastest multiplier we have. So, in any kind of a VLSI design the or a digital design these tree 

multipliers are going to be the fastest one.  

So, do we have some other alternatives? Can we make it even more structural structured or even 

more systematic so that it can be done in a more peaceful manner?  
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So, for that let us try to understand one more multiplier which is and which is called an array 

multiplier or is also called combinational multiplier. So, here the beauty of this method is it is not 

saying that give me the partial products then I will add, so it will it has combined the generation 

of partial product as well as summation. So, each row is essentially doing the partial product 

computation as well as doing the multiplication.  

So, let us try to understand this particular multiplied with a 5 cross 5 multiplication example, so 

and the example is generic enough that you can easily extend it to any kind of multiplication. So, 

we are considering 5 bit input X and 5 bit input A, so this X is x0, x1, x2, x3, x 4, similarly A is 

a0, a1, a2, a3, a4. Now, this X is being multiplied with A, so, my multiplier is X and A is my 

multiplication. 
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Now, since X is my multiplier A is my multiplicand, so in the first stage here also I am trying to 

use the same word stage, but the meaning is slightly different here. So, in the first stage, I am 

adding 2 partial products, so a0 x0 I am doing an AND gate and a x0 a1, x0 a2, x0 a3, x0 a4, so 

this is the first partial product, the second partial product is x1 a0, x1 a1, x 1 a2, x1 a3, here is x1 

a4, it would come later let us see.  

So, we are using these 4 full adders, so these are full adder, this is one operant this is the second 

operand and carry is 0 here, so carry is 0 and we all know that in whenever we add this first stage 

x0 a0 will always form the first bit of the product, so there is no doubt about that, so we can 

simply keep x0 a0 as p0. And since the addition of these two is also there x1 a0 and x0 a1 

addition of these two will also result in p1, so this is also pretty clear.  

So, what 4 other additions 4 other results p2 p3 p4 et cetera we need to add more. so, here using 

one layer of addition we are able to add two partial product, partial product that results because 

of x0 the partial product that result because of x1, these two has been added using one row or one 

layer of my full adder. Now, similarly the result of this full adder layer there would be two 

results one would be sum or other would be carry.  

Now, I can add this sum and carry to another layer where the third input is coming from the third 

partial product, third partial product means multiplication of x2 with my multiplicand, x2 a0, x2 



a1, x 2 a2, x2 a3, so you remember in our previous layer x1 a4 was missing, so this x1 a4 was 

just left like this and this x1 a4 is added to the adder in the in this new layer, the second layer. 

So, in the second layer also we will have we are adding the result of previous partial addition, we 

have done the partial addition and the result of partial addition is now added to the new partial 

product.  

So, this partial addition you see the carry is also generated after every addition, so that is why we 

are using full adders here. So, whatever is the carry from this adder is added as a carry here, 

whatever is the result of carry here that is added to the to the carry input of that is connected with 

the carry input of this particular adder full adder. Similarly, a result of this carry result of this 

sum, cay of this addition is given as a input C into this addition.  

So, all of these full addition will form the second layer. Now, similarly a third layer would be 

there, you also notice that as a result of second layer we also have got or we have also generated 

second bit P2 bit over result. So, similarly the third layer of the fourth partial products so 

multiplication of x3 with my multiplicand would be added in this particular layer.  

So, here also like our previous layer like whatever now these vertical arrows represent these 

vertical arrow represent the overall addition done so far and the slanted or distilled arrow 

represent the carry through the previous full adder, so all of them would be added in this stage 

and so this is the by now we have added 4 partial product, product with x0, product with x1, x 2 

and x3.  

In the next stage we would be adding the fourth or the last partial product to the final sum. So, in 

this last partial product you see the x0 a4 is the input here and whatever is the carry from the 

previous adder is given as a carry input all the vertical lines are the sum from the previous layers. 

So, you still see that x3 a4 the component which was left from the previous partial product would 

be added as a vertical arrow or a as a one of the input.  

Now, what about the some of these final ones? Now, it is a last interesting case the last stage and 

also the most interesting one, here this is like in Wallace tree multiplication this is also a carry 

propagating stage, here you are you whatever result we are receiving here, so for example the 

result of this because of space constraint we have to shift make these arrows little more not so 



straight as they were here, so whatever is the carry of this stage is coming as a carry input of this 

the sum is a essentially a vertical arrow, so the sum from this stage is given as input here.  

Now, remember see the carry which is out, carry out from this particular full adder is given as a 

input to the next one. So, this is the carry in from this full adder this is sum from this adder and 

the resulting carry is given as a input to the next full adder. Similarly, here also resulting carry is 

given as input to next full adder, x4 a4 is also given as a input to this final full adder  

And you will also see that P4 P5 P6 P7 P8 P9, so P5 P6 P7 P8 P9, so these are also the final 

outcome of the last layer. So, in this way this this looks like a very regular structure where we 

clearly know how many full adders would be required, what is going to be the delay of this 

particular adder, and how they would be connecting. So, while designing you can see because the 

structure is so nice that I can create these partial additions and I can create N minus 1 stages of 

these partial additions.  

And finally this particular stage could be different where we are propagating carry where delay 

could be slightly different, but these also quite a regular structure. So, this particular array 

multiplier or a combination multiplayer is more effective solution whenever a regularity is 

required. Here my overall hardware structure will also be sort of a rectangular or even a square 

structure which is very low friendly.  

What about area and delay? So, here I can see clearly the delay is odder of 2N, you can see it is 

not exactly 2N, but we can calculate from here the adder delay of this the if we see the longest 

path or the most critical path here you will see it is coming from here, this addition this addition, 

so this is the longest path, this addition then this addition the output is going to this addition and 

then output is going to this addition then output is going to this adder, this output is going to this 

adder this output is going to this adder so on so forth.  

So, the total number of full adders in my critical path is 2N minus 1, total here it is 1, 2, 3, 4, 1, 

2, 3, 4, the total number is actually 8 here. So, that means whenever whatever is the size it is 

always going to be 2N minus 2, why? Because the first bit we will always get from here x0 a0 

and the last bit final bit we will get as a carry of my final adder. So, this way whatever is let us 

say this the number of operands are N and M that the delay is going to be N plus M minus 2.  



And similarly if you see the area the area is also predictable, so here you can say in my initial 

stages 4 4 4 4, so basically N minus 1 square that would be the number of adders which would be 

required in adding partial products and in final carry propagation stage again N minus 1 numbers 

of address would be require, so the total number of adders are all the order of N square.  

So, this particular array multiplier also have some additional interesting properties that I can 

easily divide this this particular addition in two different stages, one, so here you see the delay of 

this particular variable where we are saving the carry we are not where we are adding the partial 

products we are not calculating the final some, the delay of this these 16 additions are equally 

good for equally same equal to the delay of my last stage.  

So, I can divide this adder into two different stages, one where I am adding the partial products 

and the second one, where I am propagating the carry and calculating the final sum. So, this way 

this creating this multiplication as a two-stage multiplier also help in something called pipelining 

which this pipelining will understand little later.  

But it would help us in breaking this multiplier into two different stages which are both almost 

equal in delay. So, with this we can almost closed over multiplication method. So, there are 

many multiplication method, but I have chosen these two so that we can you can understand 

some of these techniques which can be used for multiplication.  
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Now, as a summary we have seen in this lecture how to design efficient multipliers, we have 

seen two different methods, one is tree based method where tree of carry save adder was created 

and finally a carry propagation layer would be required to add all of them and the delay for that 

particular so the number of stages there were around low and the delay was also the order of N, 

while we also seen this very regular structure like array multiplier or a combination of 

multipliers in this combination particular array multiplier the number of the delay is slightly 

more, but it is more a regular structure and also be divided equally into two parts.  

So, with this we can almost close this lecture, but let us ask one more question to ourselves that 

when we have studied multiplication binary multiplication, so at that time we have seen that 

these if we multiply 2 N bit numbers and these both of these 2 bits 2 N bit numbers are 

represented using two's complement then and a result is also N bit result then we can say that the 

result is always going to be correct.  

But in this particular exercise in today's lecture we have seen the result is of size 2N, so the 

question is whether this result of 2N will always give correct result in case of unsigned numbers 

as well as signed numbers? Answer is no, in case of unsigned number it will always give correct 

results but if we follow these techniques as is as is means that the way it has been described in 

this lecture if we simply add those partial product in the same way, then sign number will not 

give correct results, there would be certain modification which is required.  

So, I am not going to discuss those modification in detail, but let us give a very quick intuition, 

so essentially let us say my multiplicand was a negative and multiplayer was positive or negative 

it does not matter, so if multiplicand was negative each partial product the first partial product, so 

let us consider 4 plus 4 multiplication, in case of 4 plus 4 multiplication the first number after 

multiplying with the 0th bit of multiplier is a 4 bit number.  

So, now this 4 bit number tell me whether this number is a positive number or a negative 

number. Since, the result is of 8-bit and partial product is a 4-bit what are the rest of the what are 

we going to assign to the rest of the bits? So, because my multiplicand was negative I have to 

sign extent each of these partial product. If I do sign extension of each of the partial product, then 

all of the techniques which we have discussed today will work in a same way.  



The only thing we had to do additionally is we have to have this sign bit or sign extension, we 

have to have additional full adders which will take care of the sign bit which will take care of 

this which will do sign extension and we should also the signs would also be great along the 

path. There would not be any impact on the delay.  
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So for example, if we see this last one, so let us say there is a another addition there is another 

addition here, so still the worst case path is going to be 2M. So, there is no impact at least on 

array multiplier there is going to be no impact if we have the additional adders in this lower half, 

in this upper half, triangle also they would be half adders full adders and these full adders will 

create some additional results and but the delay is going to be still same. So, with this we can 

close today's lecture and I will say thank you very much. 


