Digital System Design
Professor Neeraj Goel
Department of Computer Science Engineering
Indian Institute of Technology Ropar
Verilog Simulation Demo

(Refer Slide Time: 00:24)

How to compile/run/simulate

* Commercial tools
- Mentor's Modelsim/Questa
- Cadence Incisive
- Synopsys — VCS
= Xilinx Vivado
* Free
— icarus (both Verilog and VHDL)
~ GHDL (only for VHDL)
* Online platform
- edaplayground

\

Sometime we would also like to see here, the next question would be that how will we
compile, how will we run or how we will simulate, so what are these three different things?
What does each of them mean? Compile means because it is a high level language, so we
need to compile it we need a compiler and after compilation the execution will be formed,
executable would be formed and that executable once we will run that run is also called

simulation because we are simulating the hardware behavior.

So how do we compile, run and simulate the hardware model? Now because the language is
specific, the software which would compile, run and simulate are different basically more
specific to those languages. Now there are multiple of these commercial tools which are
usually there are couple of EDA companies electronic design automation companies, they

build, they design the software and we can use these software to compile, run and simulate.

So, these big three or four EDA companies Mentor’s Graphics has a ModelC which is quite
popular Verilog compiler and Verilog simulation tool and Cadence has Incisive, Synopsys
has VCS and Xilinx has Vivado. So, we would be using Xilinx Vivado at some stage of time
whenever you will come back in the campus, because Vivado not only would be able to

compile and simulate, but it would also be able to synthesize.

So after using synthesis you can burn that design onto FPGA ports. So once you are back so
then we can have this FPGA ports experiments. The other these commercial tools will have
many more features like it help you quite a lot in debugging and visualization. On the other
hand, there are free software which can be used for compilation and simulation. So, in case of
Verilog Icarus is a popular one which can be used and for GHDL is another one which is only
for VHDL. There are some online platforms also like edaplayground. So edaplayground help
you to write this Verilog code on to a online browser where you can compile, you can
simulate all the online.

(Refer Slide Time: 03:18)

Viewing waveforms

* Free HDL simulator does not offer GUI and
waveform view

+ Waveform need to explicitly dumped, see in
waveform viewer
initial
begin
$dumpfile("ha.ved"); H
$dumpvars;

and This half-adder source code is available at:
hittps:/ fwww.edaplayground.com/x/3Vuad

So, now during this course we will be using free HDL simulators Icarus most of the time. So
this Icarus software you can install on to your computers | will give a quick demo on to using
my computer. So, because we would be compiling it using a Icarus software it is a command
line tool. Now to view the waveform, we have to explicitly dump these waveforms and then
see in a waveform viewer. So, to see or to add to dump the waveforms we have to add
additional initial module in our testbench in that initial module we will write initial begin
dump file and then the name of the file and then one particular command is sufficient

dumpvars.

So, this dumpvars whatever variable it finds in your whole module testbench it will dump all
of them in that vcd file, vcd is value code dump. So this would be a dump file which can be
used to see our waveforms. So, now let us quickly look at the demonstration so | will give

you two demonstration one based on edaplayground and the second one based on your own

installation of Icarus. So, let us say this code | am directly using the code which I have

written and let us see that in the browser.

(Refer Slide Time: 04:58)

@F'W‘”‘"“ QAR 230 0y AcscHven o2t M o e | gm0 Lawrpe e

= :
il

So, let us have a quick understanding of this edaplayground. You can see on one side you are
writing your design. Design is being saved as design dot sv because system Verilog sv is the
extension for system Verilog because system Verilog is a superset of Verilog so that is a by
default edaplayground take it like a dot sv extension and then we have written the same code

here and this code similarly testbench dot sv is also written.

So this is also the similar thing what we have written you will see two initial modules one
initial modules have all the stimulus part, the other stimulus, the other initial module dumps
the variables. So on the left page you can see that whether your design is of Verilog system
Verilog or VHDL so because we are using Verilog and system Verilog. So there is no UVM,
OVM and there is no other libraries which are used.

So, here in tools and simulators you can see there are various commercial software and then
also free simulator. So in free simulator we would be using the latest version of Icarus and we
cannot use this commercial software because all of them are paid and requires some license
fees. So, let us use the latest version of Icarus as the software and then after doing all of these
thing then we can also say that after running we would like to open in EP wave so that we can

see the waveforms. So after all of these things are done we can save it and we can run it.

(Refer Slide Time: 07:00)

@F“’W’W"" BRn ARue Eh0 Ace:Himsire X 14 e meakt W o am 0 & ¥Foprake O e

So, after running you will see two things. One, that you will see a waveform viewer. In this
waveform viewer you have four signals ra rb w carry w sum ab carry and sum and you can
see the input and output of all of them at point, you see that exactly at 10 nanosecond when
we have changed our input, our output got changed immediately. So this is how what is the
meaning of our assigned statement that it changed our output immediately. So, similarly at
any particular point of time now we can check what is the input and percent corresponding to
that input what is the output. So now we can close this.

(Refer Slide Time: 07:53)

..

IR0 G4 R W) Vel ") T" R e v turtbwrh. vy M vemdt vo e
wwean Ine walpst

BT e s i
Pae
| #10w oyt
[|

And if we close this then we see that in the low or in the test, in the prompt you see that these
variables have been displayed or basically this print statements have been given A equal to 0
B equal to 0 sum equal to 0 comma carry equal to 0. So, all of these things are written in a
same way the way format we have defined. So this is how we can use edaplayground, so you
can sign up in this edaplayground and you can use. The other alternative you can install this

Icarus on to your own computer and then can work.

(Refer Slide Time: 08:34)

e
@ NpicaionsPuces_Temeal Fi2ae
reeocabort - b/ e o
Fle £ Vew Serch Temea Tax tep
R reerp@locont -crsmiog a
[neeraj@localhost icarus]$!git
Joit clone git://github.com/steveicarus/iverilog.git
KCloning into ‘iverileg’...
renote: Enumerating objects: 143, done
remote: Counting objects: 188% (143/143), done.
remote: Compressing objects: 100% (168/168), done.
rencte: Total 59167 (delta 86), reused 79 (delta 43), pack-reused 58964
Receiving objects: 106% (59167/59167), 23.67 MiB | 3.08 MiB/s, done.
Resolving deltas: 100% (47351/47351), done.
[neeraj@lacalhost icarus]s ls
iverilog »
[neeraj@localhost icarus]$ cd iverilog/
[neeraj@localhost iverilog]s Lsf
[T o L - Googe Crome
Applcatons Paces Temeal nse Y40
reeryiocatost - absanaveriog - x
:,
seera@locabest - b/ caramerio a -
Jaclocal .mé elab_expr.cc Pelays.cc PScope.h t-dll. txt
JAStatement . cc elab lval.cc PDelays.h PSpec.cc tg
JAStatement.h elab_net.cc ! PEvent.cc PSpec.h
fasync.cc elaborate analog.cc 1 PEvent.h PTask.cc
Attrib.cc elaborate.cc 1 n c.h PExpr.cc PTask.h
attrib.h elab_scope.cc net_sodulo.cc PExpr.h Pldp.cc
ttributes. txt elab_sig_analog.cc net_nex_input.cc pfor_analog.cc PUdp.h
h elab sig.cc net_nex_output.cc pform.cc Piire.cc
WGS. txt elab_type.cc netparray.cc pform_class_type.cc PWire.h
i enit.cc netparray.h pform_disciplines.cc QUICK START.txt
net_proc.cc pfors_dump.cc README. txt
L netqueve.cc pform.h S
eval_tree.cc netqueve.h pform_package.cc $ ut
h exaaples netscalar.cc pform pclass.cc Statement.cc va_math.txt
config. su exposenodes. cc mkinstalldir netscalar.h pform_string_type.cc Statement.h verilog. spec
configure.in expr_synth.cc Module.cc pform_struct_type.cc svector.h verinum.cc
constants.vans extensions. txt Module.h pform_types.cc sv_vpi_user.h verinum.h
OPYING functor.cc named.h pform_types.h swift.txt verireal.cc
OPYING. Llesser functor net_analog.cc PFunction.cc symbol_search.cc verireal.h
ppcheck. sup glos net_assign.cc PGate.cc sync.cc veriuser.h
prop.cc HName . cc netclass.cc nettypes.h PGate.h syn-rules.y version_base.h
jcygwin, txt HName . h netclass.h net_udp.cc PGenerate. cc synth2.cc version.c
esign dunp. cc ieeel364-notes.txt netdarray.cc netvector. cc PGenerate.h synth.cc vhdlpp
Jdeveloper-quick-start.txt INSTALL netdarray.h pli_types.h.in sys_funcs.cc vpi
iscipline.cc i h net_design.cc PModport.cc vpi_modules.cc
discipline. g-vpi.man.in netenum.cc PModport.h t vpi. txt
Jdisciplines.vams g-vpi.sh netenus.h parse_api.h PhamedIten.cc t-dll-analog.cc vpi_user.h
osify.c h net_event.cc parse misc.cc PhanedIten.h t-dll-api.cc wp
rt.h net_expr.cc parse_misc.h PPackage. cc t-dll.cc xilinx-hint. txt
i def net_func.cc parse.y PPackage.h t-dll-expr.cc
up_expr.cc ivipp net_func_eval.cc PClass. cc property_qual.h t-dll.h
[neeraj@localhost iverilog]$ sh autoconf.sh
JAutoconf in root
Precompiling lexor_keyword.gperf
Jpreconpiling vhdlpp/lexor keyword.gperf
[neeraj@localhost iverilog]$
[T ——— @ e Cooge O

Fle £ Vew Sexch Temes Tan bep

- | et . seea@loabont -Natwrserios. =
Jpreconpiling vhdlpp/lexor_keyword. gperf
[neeraj@localhost iverilog]$ ls

acc_user.h dup_expr.cc vl target.h net_link.cc PDelays.cc PSpec.cc tgt-fpga
aclocal .nd elab_anet.cc ivl_target priv.h netlist.cc PDelays.h PSpec.h tot-null
JAStatenent.cc elab_expr.cc ivl_target.txt netlist.h PEvent.cc PTask.cc tgt-pal
AStatenent.h elab_lval.cc lexor_keyword. cc netlist.txt PEvent.h PTask.h tgt-pch
Pasync.cc elab_net.cc lexor_keyword.gperf netmisc.cc PExpr.cc PUdp..cc tgt-sizer
JAttrib.cc elaborate_analog.cc lexor_keyword.h netaisc.h PExpr.h Pudp.h tgt-stub
JAttrib.h elaborate.cc lexor. lex net_modulo.cc pform_analog.cc PHire.cc tgt-verilog
attributes. txt elab_scope.cc libmisc net_nex_input.cc pform.cc Peire.h tgt-vhdl
autoconf . sh elab_sig_analog.cc libveriuser net_nex_output.cc wtom_:lass_lype.« QUICK START.txt tgt-vlogds
Jutondte. cache elab_sig.cc link_const.cc netparray.cc pform_disciplines.cc README.txt tgt-wwp
JBUGS . txt elab_type.cc load_module.cc netparray.h pfora_dump.cc scripts util.h
kcadpli emit.cc lpa.txt net_proc.cc pforn.h solaris va_math.txt
check. conf eval attrib.cc main.cc netqueve.cc pform_package.cc Statement.cc verilog.spec
compiler.h eval.cc Makefile.in netqueve.h pform_pclass.cc Statement.h verinum.cc
onfig.guess eval_tree.cc mingw-cross. txt netscalar.cc pform_string type.cc svector.h verinum.h
konfig.h.in examples mingw.txt netscalar.h pform_struct_type.cc sv_vpi_user.h verireal.cc
onfig. sub exposenodes.. cc mkinstalldirs net_scope.cc pform_types.cc swift.txt verireal.h
expr_synth.cc Module.cc netstruct.cc pform_types.h symbol_search.cc veriuser.h
configure.in extensions.txt Module.h netstruct.h PFunction.cc sync.cc version_base.h
jconstants.vams functor.cc named.h net_tran.cc PGate.cc syn-rules.y version.c
functor.h net_analog.cc nettypes.cc PGate.h synth2.cc vhdlpp
JCOPYING. Lesser glossary. txt net_assign.cc nettypes.h PGenerate.cc synth.cc wpi
cppcheck. sup HName.cc netclass.cc net_udp.cc PGenerate.h sys_funcs.cc vpi_modules.cc
prop.cc HName.h netclass.h netvector.cc _pU_types.h.in target.cc vpi.txt
Jcyawin. txt ieeel364-notes.txt netdarray.cc netvector.h PModport.cc target.h vpi_user.h
jdesign dump.cc NSTALL netdarray.h nodangle.cc PModport.h t-dll-analog.cc wp
Jdeveloper-quick-start.txt install-sh net_design.cc pad_to width.cc PNamedItem.cc t-dll-api.cc xilinx-hint.txt
discipline.cc iverilog-vpi.man.in netenum.cc parse_api.h PNamedIten.h t-dll.cc
Mdiscipline.h iverilog-vpi.sh netenum.h parse_misc.cc PPackage.cc t-dll-expr.cc
disciplines.vams ivl_alloc.h net_event.cc parse_misc.h PPackage.h t-dll.h
Josify.c ivl assert.h net_expr.cc parse.y property_qual.h t-dll-proc.cc
friver 1vl.def net_func.cc PClass.cc PScope. cc t-dll.txt
Jdriver-vpi ivipp net_func_eval.cc PClass.h PScope.h tot-blif
[neeraj@localhost iverilog]$./confi
I & Inaktetindare. @ et GongeOrome || o s 5 g o e
Aoplctons. Paces. lse ¥
e m@tocathost - b/ verles -0 x
Fle B Vew Sewch Tewes Tats Hep
mera@cabest - ' seera@locabont - Nabs/cares iy *
attributes. txt elaborate_analog.cc lexor.lex net_sodulo. cc pform.cc Pdire.h tgt-verilog
Jautoconf . sh elaborate.cc libmisc net_nex input.cc pform class_type.cc QUICK START.txt tgt-vhdl
Jutomdte. cache elab_scope.cc 1ibveriuser net_nex output.cc pform disciplines.cc README.txt tgt-vlog9s
JBUGS . txt elab_sig analog.cc link const.cc netparray.cc pform_dump.cc scripts tgt-vp
cadpli elab sig.cc load_module.cc netparray.h pfors.h solaris util.h
jcheck. conf elab_type.cc lpm. txt net_proc.cc pform_package.cc stamp-config-h va_math.txt
compiler.h emit.cc main.cc netqueue.cc pform_pclass.cc stamp-_pli_types-h verilog.spec
onfig.guess eval _attrib.cc netqueve.h pforn_string_type.cc Statement.cc verinus.cc
jconfig.h eval.cc Makefile.in netscalar.cc pform_struct_type.cc Statement.h verinus.h
config.h.in eval_tree.cc mingw-cross. txt netscalar.h pfors_types.cc svector.h verireal.cc
Jconfig. log examples mingw. txt net_scope.cc forn_types.h sv_vpi_user.h verireal.h
onfig.status ‘exposenodes . cC mkinstalldirs netstruct.cc Function.cc swift.txt veriuser.h
eonfig. sub expr_synth.cc Module.cc netstruct.h PGate. cc symbol_search.cc version base.h
configure extensions. txt Module.h net_tran.cc PGate.h sync.cc version.c
configure.in functor.cc nased.h nettypes.cc PGenerate.cc syn-rules.y vhdlpp
jconstants. vams functor.h net_analog.cc nettypes.h PGenerate.h synth2.cc vpi
glossary.txt net_assign.cc net_udp.cc _PU_types.h synth.cc vpi_modules.cc
JCOPYING. Lesser HiName. cc netclass.cc netvector.cc _pU_types.h.in sys_funcs.cc vpi.txt
cppcheck. sup Hiame .h netclass.h netvector.h PModport.cc target.cc vpi_user.h
kprop.cc ieeel364-notes.txt netdarray.cc nodangle.cc PModport.h target.h wp
Jcygwin, txt INSTALL netdarray.h pad_to width.cc PNamedItem.cc t-dll-analog.cc xilinx-hint.txt
jdesign_dump.cc install-sh net_design.cc parse_api.h PhamedIten.h t-dll-api.cc
Jdeveloper-quick-start.txt iverilog-vpi.man.in netenum.cc parse misc.cc PPackage. cc t-dll.cc
Miscipline.cc iverilog-vpi.sh netenus.h parse_misc.h PPackage.h t-dll-expr.cc
discipline.h vl _alloc.h net_event.cc parse.y property qual.h t-dll.
disciplines.vams ivl assert.h net_expr.cc PClass.cc PScope.cc t-dll-proc.cc
Josify.c ivl.def net_func.cc PClass.h PScope.h t-dll.txt
[neeraj@localhost iverilog]$ make
nkdir dep

Using git-describe for VERSION TAG

jo++ -DHAVE CONFIG H -I. -Ilibmisc -Wall -Wextra -Wshadow -g -02 -MD -c main.cc -0 main.o

ov main.d dep/main.d

jo++ -DHAVE CONFIG H -I. -Ilibmisc -Wall -Wextra -Wshadow -g -02 -MD -c async.cc -0 async.o

v async.d dep/async.d

++ -DHAVE_CONFIG H -I. -Ilibmisc -Wall -Wextra -Wshadow -g -02 -MD -c design dump.cc -0 design dump.o

reeaocton-tnionshert. | lairteadiame [o [T—r——— 4

s el N 7=
Mthing to be done for “all’.
Leaving directory " /hose/neeraf/labs/icarus/Iverileg/tgt-nall’
+ Entering directory ' /home/neera)/Laba/icarun/iverilag/tgl-stub’
Mothing to be dose for all
Leaving directory '/mowe/neera)/Labs/icarus/iverilog/ Tt stub’
Entertng directory “/home/neeral/labs/dcarus/iveriteg/tet -wp'
Mothing to be dose for all’
+ Laaving dieectory ' /hose/nmera) /Lt /icarus/ Lverileg/1gt-vip'
Intering directory /homa/neers)/|abs/1carus/iveriing/tgt-vhdl
1 Nothing to be done for “all”
¢ Leaving élrectory ‘/mose/neeraj/labs/dcarus/iverilog/tyt vadl' »
+ Entertng directory " /hoo/neara)/labs/dcarus/dverilog/tgt-vioghs'
Mothing to be dose fer “all’.
ate(1); Leaving @irectory " /hose/neera)/Labn/1carus/ Lverilog/tgt - viog9s'
aske 111 Enterin directory '/home/neers)/Labs/icorus/iveritog/tgt-peb’
aase[1]: Mothing to be dose for “all’,
oare[1]: Laaving alrectory */howe/neera/Labs/dcarus/iverileg/ gt peb’
Justu[1): Entoring directory ' Jhos/meera)/Labd/lcarus/iverilog/tqr-sLif
uate(11; Mothing to be doe for all
111 Leaving directory " /hose/neera)/Labs/tcarus/iverilag/tgt biLt’
ake[1}: Entering directory /home/neera)/lods/icarus/iverilog/tgt. sizer'
ate]1]: Mathing to be dwse for “all'.
aaku (1) Loaving directory “/hose/nwerif/Labs/ Lcatus/ Lvertlog/tgt-sier
(11; Intering directory */hoo/neern)/\nba/icarus/fverilag/ariver’
jasce (1] Nothing to be dome for all’,
aake |1} Leaving directory “/mose/neerdf /labs/tcarus/iverileg/driver!
L fkiestalldirs *fusr/local/bin® \
“luse/local flaclude/Iver dlog* \
“luse/local AAUbSNLT
“fusrilocal /Uib/AvI/dacTude” \
*fusr/local/hare/ean® \
* fusr/local/share/wan/manl®
/un /0N 1058211 - -m 644 Tverileg-vpd.man *fusr/Lotal/share/sen/aanl/ lvarklog-vpl, 1*
/o rfbin/installs cansat remouw ‘Jusr/local/share/sen/sanl/lvneilog-vpl.L's Permission denied
Juste; *** [Installean] Error 1
localtost tvertlogld sudo sake instal

FeNPE———

b s e

So let us see that part of demo as well. So, | have created one directory here and then 1 will
start with the installation part. So, during the installation first thing | have to do is | have to
get it from the GitHub. So the statement command is gitclone github isteve icarus iverilog dot
git. So, after getting this git then | see that one directory has been created iverilog and in this

directory there are so many files.

We have to see how do we start configuring. There is one particular sh file which is called
autconf dot sh. So, first we will run this autoconf dot sh and after this we see that there is
another file which has been created which is configure. Now we will run this configure file.
So after running this configure a make file would be generated. So we see again now a make

file has been generated.

So this make file we can use to make or to compile this whole software. It will take couple of
seconds. Yes, we see now it is done and now we can install this iverilog into our computer.
So, for installing we can write make install so when we say make install it says either because
permission is denied. So, there are two alternative for this, either if we use, if we have our

route permission on to our system then we do pseudo make install.

Otherwise we define the directory where it need to be defined, it need to be installed and that
directory should have permissions. So, after installing now we can see that this has been
installed and now we can start using it. So, if for using it | have again downloaded the same

file which | have created the same file.

(Refer Slide Time: 11:38)

e —
 platonsPucks_ T Rl ¥4 0

eerq@ocatest - by snigren

[T —— a -

So you see ha dot v is the half adder module which defines the of data flow module of our
half adder.

(Refer Slide Time: 11:51)

FN0

neercalbost ubsiveriogist a -

And we have end ha dot testbench. We have the testbench which provides the stimulus,

which instantiate the half adder and it also dumps our vcd files.

(Refer Slide Time: 12:04)

neeralocabot - i veriogtes:

So now given this half adder files so first thing is we have to do is we have to compile them
and for compiling the command would be iverilog. So iverilog then we list all the files which
we need to compile and after compilation step then you see one a dot out has been created. So
this is the executable which has been created. If we run this executable, then all the execution
has happened. So, basically all the stimulus is given to our testbench stimulus which is
generally in our testbench is given to our design under test module and you see that at every

time it says that at what other values of sum and carry.

So, it looks correct A equal to 0, B equal to 1, sum should be 1 and carry should be 0. So in
the other similar way so all the combinations are giving us correct result. So, let us see the
output along with that so this output whatever we are writing in dollar display that would be
given on the prompt or basically would be generated here itself because we have also written
dumpvars and we have generated vcd file so this vcd file is here. So, if we would like to see
this vcd file this is actually a text file, but we can see this text file only using some particular

editor or some particular tools.

(Refer Slide Time: 13:44)

ke §H0

[tietestai by e ¢ Mo

So gtk wave is a popular tool which can be used to see this vcd file. So let us see this vcd file
using gtk wave. If gtk wave is not installed on to your system, first you have to install gtk
wave and then you can use that to run or to see these particular waveforms. sSo gtk wave has
been started. In gtk wave, | can see there are, these are the four signals which are there in HA
dot TB and I can use any of them, I can append them in my signal waveforms.

So, here | can see these signals that for initial O to 10 nanosecond all the values were 0 and
after 10 nanosecond values has been changed ra and rb has been changed so the our output is
also changed. On the other hand, if | want to see my signals inside ha dot inst that means that
particular instance of half adder then I can select those signals also and then append them in

my signal viewer or gtk wave viewer. So, there also | can see the similar signal. So, you can

use this gtk wave to view the waveform and you can use dollar display to print all the outputs

and this is how we will see how we can write in Verilog.

So, in summary in today’s module what we have seen that how we can write a very simple
program like half adder in Verilog and the learning style because Verilog is going to be quite
a complete language, extensive language which has lot of syntax. So, what we will do is we
will pick and choose small syntax like this we have figured out couple of these things today

and so we will use these things and we will create our modules using this.

And we will have similar demos or similar explanations whenever we introduce our new
syntax in Verilog and then we can practice it by creating our own modules and that is how we
would be learning a Verilog. So, it should be learning by doing rather than treating it like a
language where we will first define, we learn all the syntax and then we apply. So, rather than
that we would see that in what application we can use that syntax and then we will learn

accordingly. Thank you very much.

