
Digital System Design 

Professor Neeraj Goel 

Department of Computer Science Engineering 

Indian Institute of Technology, Ropar 

Lecture 11 

Floating Point Number - 4 

(Refer Slide Time: 00:15) 

 

So, representing these numbers again IEEE 754 also include another set of numbers which are 

called Double Precision numbers. When you write a C C++ program there are 2 kinds of floats 1 

is called float another is called double. So, the double means it consumes 64 bits and it is actually 

a double precision number and whenever you write a float that represent 32 bit number, which is 

equivalent to a single precision floating point number. 

Now, in case of double precision floating point number, number of bits we got a 64. So, again 

out of the 64 bits 1 bit has to be assigned to sign and then IEEE standard says that 11 bits will 

reserved for the exponent. So, that means and here we say 1023 is the bias and 0 and 1024 are 

reserved. So, the meaning of reserved bits are same as we have discussed in single precision 

floating point number 1024 would represent infinity and not a number and 0 would mean either 0 

or the denormal numbers. 

So, and rest of the bits 52 bits for mantissa now, because of that, what do we see we see the 

precision has increased from 7 digits to 15 digits. So, this, this gives us sufficient precision for 

most of the mathematical operations. So, similar to this requirement. So, you can keep this as an 



exercise for you that after this lecture you try to find out yourself that what is the largest double 

precision floating point number that you can represent and what is this smallest double precision 

floating point number that you can represent. 

So, I will tell you it would be more than decimal for 100 So, tense for number, tense for 100 is a 

very, very large number it is the number which you can represent using floating point this double 

precision floating point number is, is more than the whole weight of the universe, the largest 

number we can think of. So, sometimes we also required to represent to be efficient in 

computation as well as efficient in space, space means how many bits are required to represent 

some number. 

So, that is why sometimes we also do half precision floating point numbers. So how precision 

floating-point numbers would be represented in 16 bits. In 16 bits 1 bit would be given as a sign 

and 5 bits would be given to exponent and a bias of 15 and 10 bits for mantissa. So, rest of the 

rules are same as what we have discussed for single precision floating point numbers everything 

else every rule is same. 

So, for example, here also 32, 31 and 0 exponent are reserved for, for representing infinity 

representing 0 respectively. So, what if I would like to have even more precision than double 

precision floating point numbers? So in that case is for, for initial some time, like the past, in the 

past history so there was initially like different vendors, they were trying to invent their own 

their, their own standardization. 

 



(Refer Slide Time: 04:09) 

 

So, for example, somebody was designing a calculator, because the part of calculators are not 

going to be used somewhere else. So, they were defining their own precision. So, let us say your 

calculator was showing only 10 digits of decimal numbers. So, the precision can be decided 

accordingly. So similarly, let us say you are designing a computer which require arbitrarily very 

large precision. So, you could use more number of bits for precision and exponent. 

So, one of the one of the example is Intel's 80 bit format standardized, but because Intel is 

leading the industry for the last 40 years, so whenever you write in C Low double, it will 

automatically take this 80 bit format. In this 80-bit format, you have more exponent bits you 

have 15 exponent bits, you mantissa bits is also 64. So, that means precision has increased the 

number of the range of numbers which you can express is also increased. 

So, based on our requirement, we can choose these formats. Then slowly IEEE has given more 

standardization or like have some people have started using more number of bits. So, for 

example, there are 128-bit representation of floating-point number or 256 bits of floating-point 

representation. So, all of these floating-point representations could be custom made for the 

custom requirement, if we see that we need to represent more, more or a larger number or a 

higher precise number, we can increase the number of mantissa bits or exponent bits accordingly. 

So, they would be required for very specific applications. These applications could be space, it 

could be nuclear, it could be it could be any scientific application. So, the idea here is that, it 



gives us freedom to choose how many bits and because your hardware is going to be custom, 

nobody else is going to use your hardware firmware. So that is why we can these people can 

decide their own floating-point notations. 

But if your hardware and software need to talk to each other, let us say we are writing a piece of 

software which we need to use in Intel machine as well as AMD machine or in some other 

machines, then the format has to be inter replaceable, or basically all of them should understand 

the same format. So, with this, we are almost closed. Let us take one example. So that we can 

understand that if some arbitrary precision is given or some particular precision is, given some 

format is given, can I convert that number to floating point number. 

(Refer Slide Time: 07:12) 

 

So, let us take it with a quick example. So, let us say we have taken this example in in single 

precision numbers also, let us do it with high precision. So, we can do it quickly because we 

have anyway done this in our previous lecture. So, let us say the decimal number is 2.625. And 

now I can represent that number using a 2 plus 0.5 plus 0.125. Now, we can say the binary 

number is minus 2 means 10, so binary number is 10 and this is 1, this is 01. 

So, the normal scientific form would be minus 1.0101 into 2 is to power 1. So, if I want to 

represent it in a in a half precision method, so that means the mantissa would be 10 bits can 

which means 4 plus 4 plus 2, so I have divided it like 2 here and then 4 and then 4. So basically, I 



have started from the reverse, so that we can complete the number of bits and exponent is 5 bits, 

and the base offset was 15. 

So exponent here was 1, so 1 plus 15 means 16 would be there, and then 16 need to be converted 

into binary, which is a 5-bit number that is 10000 then we can combine all these sign mantissa 

and exponent bits and then convert our floating point number. So, that means 1 here and then 

10000 and then the mantissa weights 010100. And so again, I would like to emphasize that 

whenever we are writing number in this, this way, if we write in a group of 4, then converting 

into hex would be easier for us. 

So, this 1100 will become C 0001 is 1 and 0100 is 4 and these 4 0s will be 0. So, this way, we 

can if we are given any number, we can understand that how to convert that number into a into a 

floating-point number of half precision, single precision, double precision or whatever is a new 

thing. 

(Refer Slide Time: 09:36) 

 

So, with this, we are we know understand all the various aspects. So, let us also see that when do 

we use floating point number which number to be used whether to use single precision, double 

precision or extended double precision and when not to use. So, one thing which has been 

observed. So, you see that whenever we are representing floating point numbers, let us say if I 

want to do addition in these floating-point numbers, how the addition would have would have to 

be done how do we do addition in our scientific form. 



So, first we have to keep the exponent as same and then we add the decimal part, fractional, 

fractional part would be added. So, let us say the 2 numbers will have different exponent first 

you will set the exponent as same and then you will shift 1 of the number so that the exponent is 

same, and then you will add the fractional part and the non fractional part. So, if all of those 

things have to be done in binary, it would require multiple different steps. 

You have to further after doing all the computation then again you have to normalize and then 

represent it in binary. So, all of these steps required so many different all this addition, 

subtraction multiplication, they require so many steps that the amount of hardware that is 

acquired or number of cycles, number of amount of time which is acquired, both of them are 

huge. 

Huge means it has to do with respect to something. So, huge means with respect to integer 

multiplication or integer addition, integer subtraction. So, that is why if, if my application has to 

be performance oriented, I want to make my application run as fast as possible, I would like to 

use as many integer calculations as possible, and I would like to minimize the floating point 

calculations. 

So, sometimes we even try to reduce the floating-point multiplication by doing fixed point 

multiplications. Though precision will reduce, but computation can be done in a fairly fast 

method. The other thing, which we have to understand with these floating-point numbers that 

whatever precision we keep, they are not infinite precision. Even in case of double precision, 

floating point number, the amount of digits are 15. 

And we have lot of irrational numbers, where whatever number of digits you have, is, is less. So, 

for example, you know, pi. So, all of these numbers will have so many digits, and you would say, 

why does it matter? A digit, which is less significant than the 10 is power minus 15, or 2’s power 

minus 1024 why it should be significant. So, it becomes significant when it accumulates at many 

places, we keep on doing competition, and let us say the competition is multiplied with some 

large number. 

The error would be the approximate error would be equal to the multiplication factor. So, this 

this accumulation, because of multiplication, because of addition, subtraction, every operation 

will introduce its own error. And those error will get magnified when, when will have this 



multiplication operations or division operations. So, that is why many times we prefer to use 

double precision numbers, if that error should be very less, whenever we want to have this 

quantization error, this is called quantization error, because we are trimming we are saying that 

we cannot represent smaller than this number. 

So, whenever we have these quantization numbers or quantization thing then and accumulation is 

happening then, then he should have single precision we go for double precision numbers so that 

the amount of error can be reduced. So, and that is how we choose that which, which position we 

are to choose. So, different if the number is of a higher precision, then it will be a using that we 

can use that for lesser error. 

Now, sometimes we also do these operations that we convert floating point number 2, you also 

sometimes typecast, it is a double precision number 2 single precision or single precision to 

double precision. Let us say you are converting a single precision number to a double precision 

numbers single precision has only 23 bits but are 23 bits of precision but double precision has 52 

bits. Now, these 52 bits so that means rest of the bits have to make a 0. 

So, if reverse is the case, we do not know what rounding technique we have to use. There are 

various rounding techniques. So, based on these rounding techniques, sometimes you will keep 

the MSB as 0 least significant bit as 0 sometimes will keep least significant bit as 1. So, these 

rounding will also create different results for different scenarios for different conversions. So, all 

of these things should be reproducible, reproducible means that every competition should give 

certain definite results. 

So, hardware will try to make sure that whatever method is being followed for rounding for 

precision for accumulation of error that that should be standardized. So, that should be fixed or 

so that it could be repeatable. So, with this we close this particular topic of floating-point 

numbers and essentially, we can summarize this whole topic as the numbers depending on our 

representation, we can have various formats and depending on the requirement, we can have 

different formats as, as per our requirement. This is also conclusion of our module 1 which 

means Binary representation. So, as a summary of this module, what do we summarize, 

 



(Refer Slide Time: 16:34) 

 

We can say that a binary number although it is only collections of 0s and 1s, but the same 

collection of 0s and 1s can be used to represent a sign number or an unsigned number and an 

unsigned number in a sign number, there could be various possibilities I can represent it using 2's 

complement 1’s complement or offset method or same magnitude method. So, all these 

combinations are there and the same 0s and 1s can be used to represent some symbols, some text. 

And same 0s 1s can also be used to represent floating point numbers as we have discussed in 

this, this, this lecture. So, that means, it is not only important to know what is 0 and 1 we should 

also know that this collection of 0s and 1s is representing what. So, some additional information 

should be provided it is mostly context dependent in based on the context, you know that this 

number. 

So, for example, whenever you are writing your C C++ programs, so you say specifically, that 

this is the type of this number, whether this number is an int, whether this number is a character, 

and somebody in the hardware is taking care of that, if you are representing that number as an 

integer, it should always be considered as integer unless you type cast it, when you type cast it, 

then you are asking hardware to not consider this number as a integer. 

But let us say consider it as a float, or corrector, or the area of connectors. The interesting thing 

is these 0s and 1s are not only representing data in various homes, but it also represent 

applications, instructions, commands, or signals. So, based on these signals, various operations 



can be performed. And that is what we see during this this whole course, that that 0s and 1s are is 

a powerful mechanism to do various operations to represent data as well as to represent different 

control signals, different commands or different instructions. There is at one level of abstraction. 

At higher level of abstraction, we can also see that these 0s and 1s can be used to represent 

applications. 

So, if you see Microsoft Word, what is it, it is an application, replayed in a binary form 01 form. 

So, if you see Microsoft Word document, that word document is also a collection of 0s and 1s. 

And in the Microsoft PowerPoint, let us say in the PowerPoint, I am writing this, this whole 

array of characters, and some symbols, all of those things are further encapsulated and written 

within Microsoft PowerPoint. 

And you all have you know that all these data so these applications, which means you can say 

documents, movies, presentations, songs, all of these are binary representation and the 

application which are understanding which are running them are also binary representation your, 

your mp3 movie player or mp3 player or a movie player and M player all of these are also some 

binary application to the extent that your operating system is also a binary representation which, 

which loads all the computer and works on it. 

So, in summary, these 0s and 1s can be used to represent anything and many other times you 

would try to define your own custom understanding custom representation of these 0s and 1s and 

because we are working at the lowest level of abstraction in this course, so, we will see that these 

0s and 1s are represented either using integers signed unsigned text, ASCII characters floats or 

Command signals instructions. With this, I would like to close. Thank you very much. We will 

start with a new module next in the next class. Thank you very much. 


