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The next thing that I would like to draw your attention to is noise in a special class of LPTV 

networks. So, when we were doing, so this is total integrated noise in networks with R, L, C 

and periodically operated switches. Earlier, we have seen the total integrated noise in 

networks with only R, L, and C, now we also add periodically operated switches. So, 

remember that every periodically operated switch in practice basically can be thought of is 

having some series resistance and, ideal switch. And this rs adds noise, and its noise spectral 

density is 2 ktr volts square this is 4 ktr volt square per hertz. This is single-sided or 2 ktr volt 

square per hertz double-sided.  

So, for example, here is an example circuit. So, let us say we have an ideal I mean a switch. 

This is the resistance of the switch, and this is a capacitor. The question is, what is the mean 

square? I mean clearly when you close the switch the there is an, I mean the resistor has got 

some noise. So, when the switch is closed, well this noise gets, goes through the network and 

is there on the capacitor. Some noise voltage exists across the capacitor. Then you suddently 

open the switch, and whatever noise there is on the capacitor remains there.  

So, the therefore, there must be some means square you should be able to evaluate the mean 

square value of that noise. The average of the noise will be 0, so the mean square noise must 

be some value. And we would like to find out what that means square value is. We have 



already seen this earlier in context of I mean, sample and hold. And this basically what was 

the result? Very good. So, Vn square, the mean square noise across the capacitor is nothing 

but KT over C. Now, the question is if you have a more complicated network, so let us say 

this is some phi 1.  
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Now, the question is let us say, you have a switch. You have a capacitor, C1, you have 

another switch. You have another capacitor C2. Let us say, this is clocked by Phi 1 this is 

clocked by Phi 2. Phi 1 is something like this and Phi 2 is something like this. And they are 

periodically switched. So, this is say this is TS. And the question we would like to ask is what 

is for instance, what is the mean squared noise across C2?  

So, there are several ways of doing this. And remember that we are only interested in the total 

mean square noise across the capacitor. Now, the question is, if we are only interested in the 

total mean square noise it does not seem to make sense to determine all the transfer functions, 

which are basically functions of frequency, and basically integrate the all of them to get the 

total mean square noise. And therefore work hard to get a lot of information, and then 

throwing away most of it, because you are only interested in the mean square noise.  

This is exactly similar to the body noise theorem for time invariant networks. Now, it turns 

out that, for networks with R, L, C and periodically operated switches, we can use the same 

approach to simplify the noise. So, that is what we are going to be doing next. So, let us try 

and exploit what we know so far. Namely, that, let us try and find, I will continue with this 

example. Let us try and find let us say this v out. Let us try and find the mean square noise of 

this network, at, say, some n times ts. In other words, I am interested in the. 



Student: Mean square noise. 

Professor: Mean square noise at the output of the network.  

Student: Time. 

Professor: But this is the, the key point is that I have converted the mean square noise 

problem into something where I am only interested in the mean square of the sampled output 

of the LPTV network. So, in other words, therefore, you can basically use all our results on 

reciprocity, as well as the equivalent LTI filter. So, what are the noise sources?  

Student: Vn 1.  

Professor: Vn 1 and Vn 2. So, therefore, we have Vn 1, it goes through h equivalent 1 of t 

which is an LTI filter with an impulse response which is h equivalent 1 of t. Vn 2 likewise 

goes through h equivalent 2 of t. And then, you add these two and you sample the output and 

that will give you vout of nTs. You sample it at n times ts, you will get v out of nTs. And 

therefore, what is the mean square noise of nTs? 

Student: Integrate it. 

Professor: You simply integrate. It is basically the noise spectral density. Let us assume that 

Vn 1 this is a switch. So this is nothing but to 2 kt r1 integral minus infinity to infinity h 

equivalent 1 of j 2 pi f whole square df, plus 2 kt r2 integral minus infinity to infinity h 

equivalent 2 of j 2 pi f the whole square df.  

Now by Perceval’s theorem. So, it does not matter whether you integrate in the time domain 

or the frequency domain, so this becomes the same as integral 0 to infinity h equivalent and 1 

square of t dt plus 2 kt r2 integral 0 to infinity of h equivalent square 2 dt.  
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Now, how do you find the h equivalent 1 and h equivalent 2? We know how to do that 

already. So, remember this is our network. So, this is r1 this is Vn 1, which corresponds to 

the resistance of the first switch. This this is capacitance C1, Vn 2, r2, this is phi 2. And well 

to find h equivalent 1 and h equivalent 2 what will we do? 

Student: We will apply the. 

Professor: Our input is a voltage, the output, sampled output voltage we are sampling it at t 

equal to a timing offset t naught, which is equal to 0. So, what do we do we need to draw the 

adjoint network. So, this phi 1 hat and phi 2 hat, we remove these noise sources. These are all 

now 0 volt sources. What do we do? 

Student: Apply impulse. 

Professor: Apply a current impulse at t equal to 0 so, this is delta of t. And therefore, the 

current that flows through these voltage sources will have a shape that is similar to h 

equivalent of. But this , I remember that this is a, whatever flows in these sources is a current 

but to get h equivalent of t you have to divide that current by 1 coulomb correct we use 1 

ampere second so that you will get the h equivalent 1 of t.  

So, similarly, this is h equivalent 2 of t times. Remember, this is a current so this must be the 

current that you see will be this times ampere second. Does it make sense? And the reason is 

that this is a current, and it will have the same shape as the impulse response. Now, what 

comment can you make about the, if you so the energy dissipated in the resistors is what? 



Student: Voltage across the ct initial is 1 by ct.  

Professor: No, no, that is okay. But in terms of the currents flowing through them, what what 

comment can we make about the currents, about the energy being dissipated in the resistors? 

Student: H equivalent square. 

Professor: It is simply h equivalent 1 square t dt times r1 plus r2. And this integral has to go 

from 0 to infinity this is nothing but integral 0 to infinity h equivalent 2 square of t dt. And 

this must be equal to. 

Student: 1 by c2. 

Professor: Well, the impulse that you apply across the output port, will inject some energy E0 

into the network at t equal to 0. So, this is nothing but energy in. So, if this is the network n, 

this is the network n hat, n hat at t equal to 0. So, then, as the network keeps running well 

there something happens to the energy, at t equals infinity there must be, there must be. 

Student: Some energy. 

Professor: There must be some energy in the network at. Now, all this remember applies to 

the adjoint network at t equal to infinity. So, this the difference between the energy at t equals 

0 and t equal to infinity must be exactly the. 

Student: Only dissipated in the resistors. 

Professor: Must only be dissipated in the resistors, it cannot be dissipated anywhere else 

because the capacitor is lossless. If you had an inductor that would be last-less, this is an ideal 

switch. So, the switches are lossless. So, the only place where all this energy can be 

dissipated is the resistor.  

So, therefore, we have seen therefore, that e infinity minus E0 minus E infinity must be this. 

But what are we trying to find? What we are trying to find is this quantity here, which is 

simply 2 kt. I mean, you can think of this as being proportional to. 

Student: Energy dissipated. 

Professor: Energy the energy dissipated in. 

Student: Resistor r1. 



Professor: In r1 and this is energy dissipated in r2. So, what do you say, I mean what do you 

what therefore can we say about the mean square noise? 

Student: You can apply. 

Professor: Mean square nice v out is nothing but 2 kt times E0 minus e infinity by 1 coulomb 

square. Why is that? So, this is actually. 

Student: We are using the current.  

Professor: Coulomb square and this must also be multiplied by actually I would call this 

ampere second. This is also ampere second.  

So, the mean square noise of the output sequence sampled at n times ts is simply nothing but 

E0 minus e infinity by 1 column square. This is exactly the same form that we got for the 

time invariant network. So, whether it is time invariant or periodically time varying we get 

the same result. 

Now, this is I mean remember, this v out of the mean square value of the output sequence 

sampled at integer multiples of ts, and this must be stationary, because it is not varying from 

it is the output you can think of it as the output of a linear time invariant filter. And therefore, 

this is basically not changing from sample to sample.  
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Now, what comment can we make if we wanted? So, to summarize therefore, if you have a 

network with R, L, C and periodically operated switches, and you want to find the mean 



square noise of the sequence, so what do you do? You first form the adjoint network. So, to 

do that, what do you do?  

Well, you form the adjoint. So, your time reverse the timing of the switches, that's the only 

thing that you need to do, then, you inject an impulse current here E0 is the energy in n hat at 

t equal to 0, e infinity is the energy in n hat at t equal to infinity and mean square value of nTs 

is simply 2 kt times E0 minus e infinity by 1 column square. 
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Now, let us do some examples. So, I am showing switches here without the resistance, but 

every switch is associated with the resistance. This is C2, this is phi 1, this is phi 2 and we are 

interested in the mean square noise here. So, what do we form the adjoint, you apply a current 

at t equal to 0. So, what is the E0? 

Student: E0 is 1 by 2C. 

Professor: 1 by. So, if you inject 1 coulomb charge 1 by C2 is the voltage developed. So, this 

basically becomes 1 by 2 C2 Q square by 2C. And E infinity what is the E infinity? Well, 

there is a voltage developed across C2 when phi 2 hat is high the charge is shared between C2 

and C1 then C1 is connected to ground. 

Student: So, it will discharge. 

Professor: So, C1 will discharge. So, as you can see eventually charge is getting. 

Student: Discharge from C2. 

Professor: From C2 and also C1. So, eventually both the capacitors will have. 



Student: 0. 

Professor: 0 charge and therefore 0 energy, so infinity must therefore be 0. So, the mean 

square value nTs is nothing but 2 kt times 1 over 2 C2 minus 0 which is nothing but kt over 

C2. Now, what comment can we make? If for instance, if we wanted V naught square of 

mean square value of nTs plus t naught what would we do? 

Student: We have to apply the impulse at the t naught we have to apply. 

Professor: No. 

Student: T. T plus t, t minus t naught. 

Professor: What is t? 

Student: Delta of t plus t. 

Professor: We have to apply delta of t plus t naught. So, you have to apply the impulse at 

what time? 

Student: At minus t naught. 

Professor: At minus t naught. So, in this if you apply the impulse at minus at minus t naught 

what is going to change? 

Student: Initial, like we have to find the initial charge. 

Professor: Yeah, the initial charge. So, what happens? The only thing that changes is that I 

mean, this switch, which is basically is either an open switch or closed switch with resistance 

rs. In either case, what comment can we make about the voltage developed across C2? 

Student: That is 1 by C2. 

Professor: It is always going to be? 

Student: 1 by C2. 

Professor: 1 by C2, 1 by 2 C2. I mean, sorry the voltage developed across C2 is going to be 1 

by C2. So, the initial energy is going to be E0 is still going to be 1 over 2 C2. E infinity is 

going to be 0. So, the mean square noise is going to be kt over C2. So, regardless of when 

you sample the output, the mean square noise is always going to be kt over C2. 
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So, let me take one last example, where e infinity is not 0. Let us call this C1, this is C2 this is 

C3. So, what is the mean square noise here let us say of nTs. What will we do? We will form 

the adjoint then, so that basically is phi 1 hat, phi 2 hat then apply an impulse here delta of t. 

What is E0? 

Student: 1 by 2 C2. 

Professor: So, when you inject an impulse the voltage across C3 is 1 or C3 so, E0 is nothing 

but 1 over 2 C3, which is nothing but half C3 times 1 over C3 the whole square. Now, once 

the network started, I mean you let the whole thing operate what happens at t equal to 

infinity? 

Student: Voltage at all the capacitors should be equally charged instead. 

Professor: So, in steady state, the voltage across all the capacitors is identical. So, we see one 

equals VC 1 equals VC 2 equals VC 3. And what is that voltage? 

Student: That initial voltage? 

Professor: Initial. See there is nowhere for the charge to go. So, whatever charge you put in 

initially, which is 1 column will be distributed across. 

Student: Across 3 capacitors. 

Professor: Across 3 capacitors, and all the three capacitors have the same voltage, so the 

voltage will be 1 divided by C1 plus C2 plus C3 across all the capacitors. So, V infinity 

across all capacitors. So, what comment can we make about E infinity therefore?  



Student: 1 over 2. 

Professor: Half into C1 times V infinity the whole square plus C2 V infinity the whole square 

plus C3, V infinity the whole square, which is nothing but one half into C1 plus C2 plus C3 

times V infinity the whole square so this is nothing, but 1 over 2 times C1 plus C2 plus C3. 
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So, the mean square output noise is nothing, but it is kt times 1 over C3 minus 1 over C1 plus 

C2 plus C3. So, therefore, thanks to this observation and energy conservation. Just like how 

we saw in the case of linear time invariant networks, the process of evaluating the total mean 

square noise can be done actually by simply looking at the network without calculating any 

transfer function at all.  

 And, as you keep I mean, here is one final example. So, let us say so, this is phi 1, this is phi 

2, this is R this is L, this is C1 and this is C2. And we are interested in the mean square noise 

here. What would this be by inspection?  

Student: Kt by C2. 

Professor: It will simply be kt over. So, E0 is nothing but 1 over 2 C2, e infinity is 0 and 

therefore, means square noise is simply kt over C2. And does not depend on L or C1 or R or 

anything else. So, with that I will stop. 

 


