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Again, very industrially relevant system that I am going to talk about is basically what I like 

to call what's called continuous time delta sigma data converter. I will give you a quick 

introduction for those of you who have not seen this before. So, let us say I mean, here is 

something that you have seen before, and this is not a delta sigma converter. 

This is c, this is vi, and this is v out and this is R. So, the op amp is ideal and there is negative 

feedback around the op amp. Now, let us assume that the circuit is working, meaning that 

none of the voltages or currents inside this network go to infinity. So, that, if that is the case 

what comment can we make about the average current through the capacitor? 

Student: It is vi by R.  

Professor: If you have. 

Student: Average current is 0, sir. 

Professor: The average current through the capacitor is 0. If the average current through the 

capacitors is 0, what comment can we make about the average current here and the average 

current here?  

Student: Both has to be same. 



Professor: Both had to be exactly the same. And what is the average current flowing through 

the input resistor?  

Student: Vi by R.  

Professor: It is vi by R on average. So, vi averaged by R. What is the current flowing through 

the feedback resistor?  

Student: Vi by R. 

Professor: Yeah, so v out minus v out by R. And because the average current to the capacitor 

is 0, it must follow that vi average must be equal to minus the average value of vi. However, 

the saying is that the dc gain is minus 1. So there is nothing new here.  

Now, what I am going to do. The next thing I am going to do is break the loop like this, and 

put a sample and hold here. And so, this is sampled at the sampling period is ts. And let us 

say this therefore, I would now called it v out of nts. So, in other words, what this is doing is 

this is sampling the output of the op amp at every ts and holding that for the rest of the. 

Student: Cycle. 

Professor: Cycle. So, this is what we do next. So, what does this mean? What comment can 

we make now about the average current through the capacitor? 

Student: Has to be 0, sir. 

Professor: Has to still be 0, assuming the system is stable? That basically means that the 

current through the input resistor, is must be on average, must be exactly the same as the 

current through the feedback resistor on average. So, this is going to be still vi average by R 

flowing that way. But what are they accomplished by putting the sample and hold in the 

feedback path? The output. 

Student: Only vi samples are attached. 

Professor: So, vi, on average by R is vout of nts on average, divided by R. Correct, so that 

must be a minus actually. In other words, so, we out of nts on average is nothing but minus vi 

on average. So, what have we accomplished by doing this? We are now able to relate the 

property of a waveform, which is continuous. And of course, continuous amplitude to 

discrete time and continuous amplitude. 



And remember, so, as I said this is called a continuous time delta sigma, analog to digital 

converter. And analog to digital conversion is convert something which is continuous in time 

and amplitude to something which is discrete in time and amplitude, and with this we have 

come halfway there. We have discretized time, but amplitude is still continuous.  

So, the next thing logical progression is to basically put a quantizer here. So, you have so, 

sample quantize and hold. In other words, if vx here was doing something like that the output 

of the sampler just the sampler would have sample and hold would have done this. So, this is 

the output of the. 

Student: Sample hold, sir.  

Professor: Hold output. And this is the quantized output. Now, what comment Can we make 

about the average current to capacitor the moment to introduce a quantizer? 

Student: On average it will be 0. 

Professor: The current through the capacitor must still be 0 on average, and therefore, vi on 

average by r must still be the same current I  mean the same current must still flow through 

the feedback resistor except that now, and therefore, vout this must still be valid even with a 

quantizer. So, valid even with a quantizer. And therefore, but now, vout of t is now no longer 

continuous amplitude, it is. 

Student: Discrete. 

Professor: Discrete amplitude. So, we now have a system which is discrete, both in. 

Student: Amplitude and time. 

Professor: Amplitude and time, and therefore, it is a digital quantity. And it is related to the 

average property of the analog waveform vi of t and therefore, this is an analog to digital 

converter. So, if the input waveform vi of t, vi of t is slow enough then on average vi remains 

the same as vi of t and therefore, the output sequence remains. I mean so basically you have 

converted from. 

Student: Low frequency compared to the output. 

Professor: The average if you take the output sequence which is quantized, both in amplitude 

and time and you average the output sequence you will get a good approximation to the 



average value of the input waveform, and this is the principle behind, this is what is called a 

continuous time.  
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So, there is a sigma converter. So, if you think about it in a block diagram form, we have an 

integrator. The output is sampled and quantized and quantization is basically you can think of 

it as some error and you feed it back. So, remember this is nothing but integrator with two 

inputs. So, this is nothing but a continuous time integrator with two inputs whose one input is 

the input to be digitized the other input is the output of the quantizer. And so, the quantizer is 

represented by a quantization error. And if I call this v and so, this is vi of t, and therefore, v 

is discrete time, discrete amplitude.  



And so, as if you look at it as now, if you look at it as a system you can see that this is a 

periodically. This is a sampler so, this is a linear periodically time varying system, and it is 

varying at. So, let us say this is period is ts varying at fs actually, which happens to be 1 over 

ts. And when is the output relevant? What are we doing? We are taking this continuous time 

waveform. 

Student: We are sampling it. 

Professor: and we are sampling it at. So, the output of the integrator is sampled at fs, which is 

the same rate. 

Student: System is varying. 

Professor: At which, which is the rate which is the same as that at which this system is 

varying. And so, this is what is called a first order and it turns out that delta sigma modulators 

or delta sigma data converters are extremely important to practice and you are probably 

carrying maybe 20 of them in your phone right now. Use all the way from sensor interfaces to 

wireless transceivers.  

So, to cut a long story short therefore, in many, many practical useful applications, we have 

LPTV systems of course, but what is relevant is the sampled output of an LPTV system. And 

what is more, the system is sampled at the same rate at which. 

Student: The system is varying. 

Professor: The system is varying.  
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So, in other words, so, let us start off with see what is so special about this, such systems. So, 

we have the LPTV system where we can basically represent it by its Zadeh expansion. So, we 

have h 0 of j 2 pi f then we have h minus k of j 2 pi f this is e to the minus j 2 pi k k fs times t 

h sub k of j 2 pi f. So, this is vi of t. This is, I forgot about e to the j 2 pi k fs times t and this is 

we are going to call this x of t and y is t. This is the LPTV system. Now, what are we 

interested? We are interested in. 

Student: Sampled value of output.  

Professor: In principle we are interested in sampled value of the output. So, this is being 

sampled at. So, we are interested in y of nts. And just to refresh your memory, these are all 

linear time invariant filters. And well we are adding multiple, the outputs of multiple 

branches, and then sampling. You might as well, I mean, adding and sampling is the same as 

sampling and adding. So, what we are going to do is this is this. Then what is happening here, 

we are multiplying two quantities right and then sampling the output.  

Student: So, it is equivalent.  

Professor: It is equivalent to sampling the individual inputs to the multiplier, and then 

multiplying the two samples. So, if you sample this therefore, you can just basically say, you 

can move. If we sample this into t, now if I sample this and n times ts what do I get? e to the 

minus j 2 pi k fs times nts. So, what do you get? fs times ts is 1. So, what do you get? 

Student: 1. 

Professor: 1. So, this is simply equal to 1. So, likewise in all these branches you will basically 

get all of this will become 1. So now, what do we, we are sampling the outputs of many 

filters and then adding the samples, this is equal into moving the addition first and then 

sampling later, so this is equivalent to h sub 0 or j 2 pi f minus k sub minus k of j 2 pi f, h sub 

k of j 2 pi f, correct. This is x of t, this is y of nt. So, what is this now? And remember what 

are all these? 

Student: LTI system. 

Professor: They are all LTI systems.  
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So, if you are only interested in the sampled output, you can think of the LPTV system as. So, 

this is nothing but x of t going through sigma over k of h sub k of j 2 pi f and the output is 

sample.  
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So, in other words, the key conclusion is that the sampled output y of nts of an LPTV system, 

which is also varying with the same frequency, can be thought of or can be obtained by 

exciting an LTI filter. Filter, let us call this h equal and have j 2 pi f with x of t, and sampling 

its. In other words, if I had the same input x of t, so this is the LPTV at fs, and this is a 

equivalent linear time invariant filter, where h equivalent. I mean, obviously, has equivalent 

depends on the LPTV system has chosen to be h sub k of j 2 pi f.  



And if I sample the outputs in the same nts, I will get the same samples. And this is, this 

makes life a lot easier. Because if you are only interested in the samples, there is no need for 

you now to worry about all these multiple harmonic transfer functions and all that stuff. It is 

simply straightforward. I mean, it is, if you find h equivalent of j 2 pi f, which is simply the 

sum of the harmonic transfer functions of the LPTV system, then, you can determine the 

output samples without any problem. 

Remember one thing though, that only the samples are the same, these are not necessarily the 

same. You can have different waveforms there, but when you sample it at n times ts you get 

the same samples. Does it make sense? And so, this makes life easy in many situations, 

particularly noise analysis. If you are interested only in samples and so on so we will discuss 

this in the next class.  

The key takeaway today is that if you sample the output of an LPTV system at the same rate, 

then those samples are indistinguishable from what you would get. If you sample the output 

of an appropriately chosen linear time invariant filter and what is that appropriately chosen 

linear time invariant filter, it is that filter whose frequency response or whose transfer 

function is simply the same as the sum of the harmonic transfer functions of the LPTV 

system. 

 

 


