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So, we have been talking about wavelength modulated sensors in our last lecture and before 

we go into specifics of wavelength modulated sensors, let me just go back and share you 

some information, which I had forgotten to do previously. So, when we were discussing 

phase modulated sensors, especially, when we were talking about fiber optic gyroscopes, we 

were deriving certain limits as far as fiber optic gyros are concerned due to environmentally 

induced phase noise as well as short noise and all that.  
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And excellent reference for some of this is actually from it is this, I think it is probably a 

book chapter maybe, but Fiber Optic Gyroscope Principles by Merlo, Norgia and Donati, so 

this actually, so this is actually from the handbook of Fiber Optic Sensing Technology and 

they talk about lot of the basics of fiber optic gyros, where it is applied and then go going 

through the principles and all of that, so you may want to just go back and look at that as a 

reference.  
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So, coming back to where we were, we were talking about wavelength modulated sensors and 

we recognize that what we are really interested in is encoding the perturbation in frequency 

or wavelength, so this is actually the perturbation information that we are interested in. And 

the reason why we want to do that is because of the fact that when it is encoded in 

wavelength of frequency it cannot be corrupted by all the traditional noise sources that we 

saw, for example, the environmentally induced noise.  

It is not an issue as far as wavelength modulator sensors are concerned, because the, it cannot 

change the wavelength information. So that is actually a big advantage for these sensors and 

specifically we started talking about using these fiber Bragg grating. So, let us go into that a 

little more detail today.  
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So, we are going to be talking about fiber Bragg grating based sensors. So, we will first look 

at what these fiber Bragg gratings are all about, but typical configuration is going to be 

something like this, you have a broadband source that is emitting radiation over a broad range 

of wavelengths and that is typically going into a circulator or a coupler so that it is it is 

sending light in one particular direction.  

And we have a fiber grating that is connected to this circulator, so anything that is back 

reflected from the grating is going to come down this path. So, if you say port 1, port 2 and 

port 3, it is going to come to port 3. And, so port 3 typically has this information where, if 

you look at the power spectrum, power as a function of lambda, it is going to look something 

like like this and we are interested in picking up this center wavelength.  

So, how do you measure that? Well, we know that our traditional receiver is not capable of 

picking up color, so you have to essentially go through what is called a wavelength 

demodulator that converts essentially the wavelength information into intensity information 

and then you can actually pick it up using an optical receiver. So that is typically the 

configuration that we are looking at.  

Now there are several questions with this, first of all if we talk about this reflecting at lambda 

b, what defines lambda b, what is that Bragg wavelength dependent on and then you are 

interested in what is the width of this peak over here, what determines where it goes to 0, 



what determines the peak reflectivity level/ So, this peak actually corresponds to certain 

reflectivity, so what determines the reflectivity of a fiber Bragg grating and so on.  

So, let us actually try to dwell into this a little more deeper as to what is the physics of fiber 

Bragg gratings before we go into how we can use fiber Bragg gratings as a sensor. So, how 

does the fiber Bragg grating work? A simple way of explaining this could be, this answer to 

this question of how does a wavelength, sorry, how does a dielectric mirror work?  

We know that dielectric mirrors typically have refractive index, different layers with different 

refractive indexes, especially high refractive index layer followed by a low refractive index 

layer and then a high reflective index layer and so on. So, essentially it is, when you look at a 

dielectric mirror it is going to consist of multiple layers. So, one layer with high refractive 

index, another followed by another layer with low refractive index, another layer with high 

refractive index, another layer with lower refractive index and so on.  

So when you have a wave coming in, it is going to undergo a reflection whenever there is a 

change in the refractive index, whenever there is an impedance mismatch and clearly when it 

is going from lower refractive index into a higher refractive index, from a rarer medium into 

a denser medium, it is going to undergo a phase change of pi, so in this case, for example, if 

you are looking at this reflected component, because it is going from air into this medium 

with higher refractive index, it is going to have a phase change of pi.  

So, mirror is one, well-designed mirror with high reflectivity is one, where all these 

reflections from these different layers are going to add and phase. So, how can that happen? 

Well, that can happen if let us say this is designed so that you have a propagation phase of pi 

by 2 upon reflection here there is, because it is going from high refractive index into low 

refractive index there is no phase change upon reflection.  

But let us say this is actually another pi by 2 because it is going through the same thickness. 

So, you have a cumulative phase change of pi. So, these two components are in phase with 

respect to each other, so they they add up, their fields add up essentially. And then you can do 

the same for the next layer also. So this is also pi by 2, but here you have a pi phase shift and 

because it is going from lower refractive index to higher refractive index, so you have a pi 

phase shift at that point and let us say this is pi by 2 this is also pi by 2.  



And so what you get out here is pi by 2 plus pi by 2 is, pi plus pi is 2 pi, plus pi is 3 pi, so you 

have 3 pi, which is a different phase, but then it is 2 pi phase shifted with respect to the other 

component, so it is still going to add and same thing you can repeat and you you have 0 phase 

shift upon reflection but pi by 2 over here, so if you look at that component that will also 

have 3 pi and so on.  

So, you can have multiple layers, alternating layers of low and high refractive index and you 

can essentially make a mirror, so this will be a highly reflecting mirror if you have more 

number of layers and so the reflectivity depends on the number of layers as well as the index 

contrast between high and lower refractive index. If there is a huge index contrast, then that 

would correspond to achieving say 99 percent reflectivity with less number of layers.  

On the other hand if the refractive index contrast is low, you may need much many more 

layers to achieve the same reflectivity but that is the basic principle of a dielectric mirror and 

now let us just examine this condition, we have assumed that there is a pi by 2 phase shift 

while propagating through this thickness. So let us actually look at that, so when you look at 

the phase, that the light accumulates at, say a particular wavelength lambda, that phase is 

given by 2 pi over lambda multiplied by nh is the refractive index of the high index layer.  

Let us say the thickness here corresponds to dh, similarly the thickness here corresponds to 

let us say dl, so 2 pi over lambda nh multiplied by dh is equal to pi by 2, if you work that out 

you basically say dh is going to be equal to lambda over, this 2 is going to come over here, so 

4 times nh and similarly for the lower index layer you can also find dl will be equal to lambda 

over 4 times nl.  

And if that is the case then we are talking about this entire thing corresponding to one high 

and low index pair. So, let us have that overall thickness as a capital lambda, that corresponds 

to the period of this structure. So, if you look at capital lambda, which is dh plus dl is going 

to be lambda over 4 times nh plus lambda, sorry, lambda over 4 times nl.  

So, if you consider that nh is approximately equal to nl if the index contrast is on the lower 

side, then you can effectively replace nh and nl by say n effective and if we do that, then we 

get this expression capital lambda equals to lambda over 2 times n effective, which implies 

that you can write this lambda, which we now can call as a center wavelength in instead of 

just calling this lambda, if you have that center wavelength is called lambda b, then you can 

just say lambda b equal to 2 times ineffective capital lambda.  



So that, so it works nothing, I mean, it is not any different from how a dielectric mirror works 

upon normal incidence. Why normal incidence? Because we are talking about light coming in 

here in an optical fiber, it is typically a single mode optical fiber and it is incident normally 

on this grating and and the grating is actually reflecting light in this case. So, the fiber Bragg 

grating behaves in a similar way as as a dielectric mirror.  

So, that is one way of explaining, of course, the other way of explaining is actually through 

couple mode theory. So, we can look into the little more detail, but before we do that, I mean, 

this just gives you the condition for getting this lambda b, but it does not actually give us any 

information about what is going to be the reflectivity and what is the width of the reflection 

peak and so on. So, let us look at that, so in order to actually determine those you would have 

to use Coupled mode theory. So, let us actually go into that and check that out.  
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So, essentially if you look at coupled mode theory corresponding to fiber Bragg gratings 

FBGs in short, what we are looking at is you have essentially an index perturbation 

corresponding to the fiber Bragg grating, so essentially you have some change in refractive 

index like this, so you have a change, a periodic change in the refractive index.  

So, if you express in terms of the refractive index, what we have is, let us say this is actually 

corresponding to the core refractive index NCO and these regions you have a higher 

refractive index corresponding to the, I mean, compared to the core refractive index and it 

goes back to the core refractive index here. And this refractive index change, let us call that 

delta n. This could be a fairly small number.  



But what it is doing is essentially you have light at a certain wavelength, so let us just say this 

is, if you are looking at the Bragg wavelength, then it is coupling a forward propagating mode 

to backward propagating mode with the same wavelength. So, that is what this is doing and 

that is done through this grating structure, which has a period of capital lambda. So what we 

learn in coupled more theory is the fact that if you want to couple from one wave to another 

wave, then you have to essentially satisfy a phase matching condition.  

So, what is this phase matching condition? Well, you consider essentially the phase constant 

beta 1 which is loosely called as a propagation constant as well. So, you have two waves with 

different propagation constants and they need to be compensated by or one wave may need to 

be slowed down with respect to the other wave by this grating structure. So this grating 

structure is having a component, say you can call that as a wave vector corresponding to 2 pi 

over capital lambda.  

So, if you, essentially, if you want to couple from one mode to another mode, from one wave 

vector to another wave vector you can do that by a periodic structure, so this is what Bragg 

diffraction is all about as well. So, in this case we are talking about coupling a core mode beta 

c naught that is what this mode has, into a mode that is going in the opposite direction, so that 

is actually represented by minus beta c naught.  

So, you have minus of minus beta c naught, this is equal to 2 pi over lambda and when you 

talk about the phase constant corresponding to the core mode you can write it as 2 pi over 

lambda for this particular wavelength lambda b times n effective plus you have 2 pi over 

lambda b times n effective is equal to 2 pi over capital lambda and so in this case basically 

the 2 pi cancels, so you have 2 times n effective over here in the numerator.  

And then you interchange the terms and of course, what you get is lambda b times, lambda b 

equals to 2 times n effective multiplied by capital lambda, which is of course, consistent with 

this other picture where we were just looking at the phase changes upon reflection. So, you 

can essentially use either of those pictures and you can show that this lambda b, the Bragg 

wavelength is determined by 2 times n effective capital lambda.  

So, if you come in with broadband light you are able to pick up one particular wavelength or 

rather it is actually a small spread of wavelengths around lambda b. Why do I say it is a small 

spread? Well, even if you are off lambda b, if you are slightly off from d tuned from lambda 



b this this reflection still happens, all these points the reflection still happens, it is just that 

they are not exactly in phase.  

So, because of that they do not add up as much as it does in lambda b, but that does not mean 

that there is no reflectivity, so the reflectivity is a finite value around lambda b. It just sets a 

value less than the value at lambda b. So, we want to actually find out how this reflection 

spectrum is going to look like. So, that is what we will do next. And to do that like I said we 

need to probably go into a little more details as far as coupled mode theory is concerned.  

So, the basis for which we can actually write out here, so we are basically saying that, let us 

say this is along the z direction, so you are going from z equal to 0, z equal to l is where this 

perturbation is present and what this perturbation does is you have a incident wave, let us say 

with a field whose amplitude is given by A, so you say the field over here is A of 0, but as it 

propagates down the grating, it is getting depleted.  

Why is it getting depleted? Because at each of these interphase it is getting reflected, so the 

original amplitude is now going to go down. So, it it basically goes down, let us say like this 

and then finally it goes out with this value, which you can write as a of l. Now what about, 

what can you say about the reflected field component? Well, the reflected field component is 

going to, let me just represent this in red.  

So the reflected field component is going to have start with the value of b of l, but it is going 

to actually increase as it is actually propagating because it is coherently adding up with other 

field components, so it is going to run parallel to this line and it is going to come out with b 

of 0. So, now, what is reflectivity? Well, reflectivity, if we were to define, so this is what we 

are trying to find out, reflectivity is a value that is defined with respect to the power, it is 

reflected power over the incident power.  

So, this is basically b of 0, so the the power is proportional to the magnitude of the field 

square, so this is what we want to find out. And this we want to find out at different 

wavelengths essentially. And of course, there are some generic in the conclusions that we can 

make or observations we can make, based on this we can say that the rate at which it is 

getting depleted depends on the index contrast between the high and lower regions.  

So, larger the index contrast more will be the depletion, and of course, vice versa if it is, if the 

index contrast is relatively small as in the case of a fiber Bragg grating that delta n is typically 



in the order of 10 power minus 4, if relatively low index contrast, then you may need the 

depletion, the rate at which it depletes is not as much, but on the other hand if you have a 

longer length, it will actually end up depleting more and that actually means that you have 

more reflectivity. So, you can make some observations like that.  

Now, the other observation you can make is essentially the boundary condition, the boundary 

condition at this side, you can actually say this b of l should correspond to 0, let us assume 

that there is no other light coming from the other direction, so the only light that we are 

considering is actually incident from this direction.  

So, if you consider that and if you also, you can also consider that the, when we look at the 

reflection or the reflected power it is not going to change with respect to, the total reflected 

power is not going to change with respect to this direction. So, you can write that d of z, the 

differential with respect to the z direction of b of z whole square that corresponds to the, 

actually the intensity, but we can we can consider that is proportional to the power.  

So minus a of z, that is going to be equal to 0. So, essentially we are saying that whatever 

reflected component you have is going to be because of the incident field components, 

presence of the incident field component at that particular point. So, you can, that is another 

observation you can make and that can help solve this particular set of equations. Well, what 

we have is actually these coupled mode equations.  

So, we can write the evolution of the incident component, incident field component as well as 

the reflected b field component, it is going to be dependent on each other like the incident 

field component evolution is going to be dependent on the reflected component because of 

the fact that even as it is reflected, part of it is going to be reflected back and that is going to 

add to the incident field, so it is it is going to happen in a continuous manner.  

So, you can write dA over dz as minus i kappa a to b that is actually what is called the 

coupling coefficient multiplied by B times e power i delta z, I will come back and define 

what delta is, that is clearly a phase term, phase modulation term that we have, and similarly 

when we write, you can write the evolution of the reflected field, which is denoted by B as 

minus A kappa BA and that is actually dependent clearly on the incident field amplitude.  

A e power minus i delta times z, minus i because it is actually going in the opposite direction. 

So, by the way all these are discussion from this book by Amnan Yariv, it is a book that is 



titled Optical Electronics write by Amna Nyarev, so you can you can find this discussion 

here. Where you need to, we need to define two terms, where you have delta, where delta is 

actually the detuning constant.  

Remember we talked about beta 1, beta 2 and and 2 pi over lambda, so that is what this is 

representing, so you have beta A that corresponds to the propagation constant of the incident 

field minus beta B that is the propagation constant of the reflected field minus 2 pi over 

capital lambda. So, what can we say about delta at wavelength lambda b, at lambda b we 

know beta a minus beta b equals to 2 pi over lambda, so delta would be equal to 0.  

So that is actually a special condition that we will look at. And we will also say that kappa ab 

is nothing but conjugate of kappa ba, so in terms of magnitude it is the same and because it is 

all happening in the same structure and that is actually going to be given by the overlap of, it 

is going to correspond to coupling due to some perturbation to the field. What is causing this 

perturbation? What, here the perturbation is caused by this refractive index change.  

So, when we talk about quantifying kappa, so this will correspond to omega times epsilon 

naught over 4 in double integral of delta n square, the refractive index perturbation that we 

have, multiplied by the field corresponding to the incident wave, field corresponding to the 

reflected wave, Ea Eb dx dy, so that is actually integrated over all this dimension in the 

transverse plane, so that you can write it as minus infinity to plus infinity.  

But most of the action is happening around this core region, so even if you go a few microns 

from the core region there is not going to be a significant field. But essentially this Ea Eb dx 

dy what it is denoting is actually the overlap integral, so it is basically the overlap of the two 

fields. And that overlap as far as the structure is concerned, we can say is going to be fairly 

strong because the, both of these waves have to satisfy Maxwell's equations for this 

waveguide.  

So, essentially, we can say that if your incident field has a distribution like this that looks 

somewhat Gaussian because it is a fundamental mode, the reflected field also is going to look 

somewhat similar, except that the overlap of the fields with respect to the perturbation is 

limited to only the fields within the core region, so that is where the delta n comes into the 

picture, it is limited only within the core region, the cladding, the fields in the cladding is 

actually not seeing this index difference.  



So, you need to actually account for that in terms of a confinement factor, let us say you have 

a confinement factor eta, which talks about how much of the energy is actually present in the 

core of the optical fiber. So, we will go, we will come back and look into that. Now, we need 

to solve this with these boundary conditions, b of l equal to 0 and then you have to basically 

conserve energy in this structure and that is what this is reflecting.  
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So, if you do all of that, I am not going to actually go through the steps in the interest of time, 

but if you do all of that you get an expression for the reflectivity of this grating and that 

expression, so in terms of reflectivity, which we defined as the magnitude of the reflected 

field square divided by the magnitude of the incident field square, the solution for this is 

going to be in the in terms of hyperbolic sin and hyperbolic cosine.  



So, essentially, the expression for reflectability will also be in that sort of manner, so this is 

going to be given by sin x square kappa ab and kappa ba, let us just represent that with a 

common kappa, kappa square minus delta square, the whole root multiplied by l, where l 

corresponds to the length of this fiber Bragg grating divided by cos h square root of kappa 

square minus delta square multiplied by l minus delta square over kappa square.  

Where delta as as we talked about corresponds to beta a minus beta b minus 2 pi over capital 

lambda, which is equal to 0 at lambda equal to lambda b, but it is some other finite value for 

any wavelength away from lambda. Where does lambda come into the picture here? Because 

beta a is given by 2 pi over lambda multiplied by n effective. So, that is where the lambda 

dependence comes from.  

And kappa, if you evaluate for this structure, this can be approximated as pi times delta n 

divided by lambda multiplied by eta that is essentially something that you get by evaluating 

this integral for this particular structure and once again I am not going to the details of how 

that is done but, so that is how it works out as far as the coupling coefficient is concerned. 

And eta is actually your confinement factor, which we can assume to be a relatively large 

number as far as a well-guided fundamental mode is concerned.  

But if you go to a long wavelength much longer than the design wavelength, which is around 

the cut-off wavelength, if we go to much longer wavelength, then we know the fields are 

going to extend much farther into the cladding and in that case eta is going to be a number 

that is much smaller than 1, and if that is the case then the coupling coefficient also is going 

to be relatively weak.  

So, how does this all work out? Now, this is actually the reflectivity, we can say reflectivity 

as a function of wavelength is like this, but if you are interested in the reflectivity at lambda 

equals to lambda b, at the center wavelength, then we know at lambda equal to lambda b, 

your delta equals to 0, so if you drop delta then this term the denominator goes away and 

these terms would go away as well, so you just get a kappa times l.  

So, this actually works out to be tan n square kappa multiplied by l, so that is one important 

result and of course, if you want to evaluate this, if you want to get a feel for how this works 

out, if you say, for example, let delta n equals to 10 power minus 4 and let us say the length is 

typically 3 millimeter and let us say lambda.  



We are considering as 1.55 micron, if we use this, then if you evaluate kappa times l that is 

going to be pi times 10 power minus 4 multiplied by 3 into 10 power minus 3 divided by 

lambda which is 1.55 into 10 power minus 6 and this will work out to be a number 

approximately equal to 0.6 and if, what that means is the reflectivity is work out to be 

something in the order of 30 percent.  

So, how can you increase the reflectivity? So, why is the reflectivity important? Because you 

are picking up this Bragg wavelength from any other background noise at the receiver, so 

higher the reflectivity the better, but you cannot ensure high reflectivity over an extended 

period of time, so you should be able to work with even lower reflective gratings. But 

anyway reflectivity, if you want to increase the reflectivity what can you do, you can possibly 

go for higher index contrast or you can increase the length of the grating. So, we will look 

into some of those details in the next. 


