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Polar decomposition and some applications of SVD 

Hello and welcome to this lecture. We are going to talk about two different topics. One for a very 

quick wind up of this polar decomposition which I did not mention before. We will quickly look 

at that. It's a small and simple consequence of SVD and then we look at some two or three 

applications of SVD, how it's used in practice. And it’ll also give you a sense of how to think of 

matrices, how to think of linear maps, how do they show up in real life from nowhere, right? You 

know? I mean we already saw in the page rank algorithm how, you know, applications rely on this 

intuition you build with Linear Algebra about vectors and matrices and linear maps and how you 

sort of look at, how do you sort of, you know, generate them in real life problems when maybe 

they don't seem to appear.  
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So there are some nice models and some principles here on how to construct these matrices in the 

real world and how to associate linear maps with them, how to think of SVD etc. in that context. 

So hopefully these applications will give you more of a flavour of how these things work in real 

life, okay? So let us go ahead and look at them. So once again this course is not primarily about 



applications, it's mostly about the theory and all that, giving you a solid foundation there. But also 

I think it's good to sometimes see how in the applied world people pick up and connect the dots 

and use the theory in a very creative, clever fashion, okay? So let us go ahead and see that.  

So a quick recap. I will skip the recap in this lecture. So we've been looking at SVD this week. 

And SVD of a matrix 𝐴 has this very simple description. 𝐴 is an 𝑚 × 𝑛 matrix. 𝐴 can be written 

as a product of three matrices 𝑈𝐷𝑉∗. 𝑉∗, star denotes conjugate transpose. So that's 𝑈𝐷𝑉∗. 𝑈 is 

an 𝑚 × 𝑚 unitary matrix, columns are left singular vectors or basically eigenvectors of 𝐴𝐴∗. 𝐴𝐴∗ 

is as you know a self-adjoint operator. So it would have an orthonormal basis of eigenvectors. And 

those are called the left singular vectors of 𝐴. And 𝑉 is 𝑛 × 𝑛 unitary. 𝑉∗ like I told you is the 

conjugate transpose. Columns of 𝑉 are right singular vectors or they are basically the eigenvectors 

of 𝐴∗𝐴. 𝐴∗𝐴 again is a self-adjoint operator and it's like, it will have an orthonormal eigenvector 

basis and one of those becomes the set of right singular vectors for 𝐴. And that makes up the matrix 

𝑉. And this 𝐷 diagonal matrix is an 𝑚 × 𝑛 diagonal matrix sort of. 𝐷 is like the heart of 𝐴, right? 

So essence of 𝐴 and it’s got the singular values on the diagonal. Usually you arrange it in 

decreasing order, singular values are non-negative so you put them in decreasing order along the 

main diagonal of 𝐷. Diagonal is basically 𝑖 and 𝑗 are the same, right? Row and column indices are 

the same, that's the main diagonal.  
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And what are singular values? Singular values are square root of the eigenvalues of 𝐴∗𝐴 or 𝐴𝐴∗, 

right? So of course the numbers differ here. But, you know, you can figure out how many you need 



for an 𝑚 × 𝑛 diagonal matrix, okay? So that is the thing. So you can see that, you know, 𝑉∗ is just 

a unitary transform. It's not doing much. It's rotating in some way. And 𝐷 is what is really doing 

the transform and it's just a scaling of the coordinates in the basis of the columns of 𝑉. And then 

𝑈 is also just a unitary operator which is again rotating. So you can think of 𝑈 and 𝑉 as not doing 

much, and 𝐷 is the one that's really representing what 𝐴 is doing. And so this is a very good way 

to picture a matrix which could be very big and unwieldy in big large values of 𝑚 and 𝑛. But 𝐷 

you know has got very few entries and it gives you a very clear idea of what it is. So this is the 

power of SVD. It gives you a good feel for how to work with matrices, okay? So that's SVD. We 

have seen that before.  
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So there is a connection between SVD and what's called the polar decomposition of an operator. 

So now supposing you take 𝐴 to be a square matrix 𝑛 × 𝑛 representing some operator. Maybe in 

the standard basis, right? So then we know 𝐴 has this 𝑈𝐷𝑉∗ SVD again, right? And even if it is an 

operator that is true. Now I will do this little trick of introducing this 𝑉∗𝑉 in the middle, right? So 

this is 𝑈𝐷. In between 𝑈 and 𝐷 we’ll introduce this 𝑉∗𝑉, right? So that is what I have done here. 

You can see between 𝑈 and 𝐷 I have introduced 𝑉∗𝑉. 𝑉∗𝑉 is 𝐼, right? It is not doing anything. But 

then I'll bracket them differently. I'll bracket the 𝑉𝐷𝑉∗ separately and bracket the 𝑈𝑉∗ separately. 

So now 𝑈𝑉∗ is unitary, okay? So you can check this very quickly that 𝑈𝑉∗ will be unitary. If you 

want I can check that for you, right? (𝑈𝑉∗)∗ is 𝑉𝑈∗. So 𝑈𝑉∗ multiplied by (𝑈𝑉∗)∗, product of two 

unitary matrix operators, unitary matrices is unitary, okay? So that's something you should be able 

to easily show. 𝑉∗𝑉 is 𝐼 then 𝑈𝑈∗ is 𝐼 so this becomes 𝐼. So 𝑈𝑉∗ is unitary, so it basically represents 



an isometry. So 𝑈𝑉∗ is an isometry. But then look at what is this. 𝑉𝐷𝑉∗. 𝑉𝐷𝑉∗ is self-adjoint, 

right? And since 𝐷 basically, in 𝑉𝐷𝑉∗, 𝐷 is like the singular values which are the eigenvalues of 

√𝑇∗𝑇, the columns of 𝑉 are the eigenvectors of √𝑇∗𝑇. So this is nothing but the operator √𝑇∗𝑇, 

okay? So 𝑉𝐷𝑉∗ represents √𝑇∗𝑇, okay? So this is just a reinterpretation of what SVD represents 

when you have a being an operator 𝑛 × 𝑛, okay?  

So the polar decomposition essentially states this fact, okay? It says for any operator 𝑇: 𝑉 → 𝑉, 

there exists an isometry 𝑆 such that 𝑇 becomes equal to 𝑆√𝑇∗𝑇, okay? So why is this called polar 

decomposition? So this is sort of like this, it is analogous to… For a complex number you can 

always write the complex number as its absolute value multiplied by 𝑒𝑖𝜃, right? So 𝜃 is that 

argument of 𝑧. So this is what this is doing. So the √𝑇∗𝑇 is sort of like the absolute value of 𝑇 in 

some sense because it is a positive square root, right? It's a positive operator. And then 𝑆 is like a 

𝑒𝑖𝜃, right? It's a rotation. It's like a unitary operator 𝑆. So this is always true for operators. So this 

sort of advances the analogy that we've been talking about between complex numbers and 

operators in some sense, okay? So this is polar decomposition. I'm just mentioning it. It's a simple 

fact from SVD, okay? All right. So that's all the theory that we want to do in this class. So we've 

sort of concluded this whole course as far as the theory is concerned.  
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So to really close it out, I want to show you some two or three applications of SVD. In fact three 

applications for SVD maybe and then show you how people think of, you know, how people bring 

in these linear algebraic notions in practice and use them very effectively. We already saw them 



with eigenvalue applications. So here we'll see with SVD applications, okay? So and with that 

we'll close the course. So this will be sort of the last lecture in that sense.  

Okay. So the first thing I want to show you is through this Colab sheet that I've shared with you 

through Github. So this sort of shows you how matrices can be approximated and I'm depicting it 

with images, okay? So always when you think of a matrix, an image is an easy thing for you to 

represent, right? So if you have a large matrix, you can represent it as an image and I have done 

that here and sort of shown SVD in action. So this is, you can think of it as an application in image 

compression. People use SVD in some image compression sometimes. So this sort of illustrates 

how that would come about, okay? So this is a Python3 Jupyter Notebook, Colab notebook. So 

you have to import some packages. There is the cv2 package which I'm using. So this is a very, it's 

an OpenCV package. Open computer vision package. It's a very popular python package for 

reading images and all that. All I'm doing is for reading images, okay? So I took a Gajendra Circle 

picture, IITM GC picture in low resolution. JPEG picture. You can also take bigger images if you 

want. So this picture is available from the IITM website through the Instagram page that we have. 

It's one of those pictures. Or you can take any other picture also if you want to play around with 

it.  
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So I've put a comma 0 here. I believe the 0 just imports it as a grayscale image that's what this 

cv2.imread does. So basically I'm reading it in grayscale. If you don't read in grayscale, JPEG 

images have, you know, multiple attributes. Some of them have three attributes. RGB. Some of 

them have a fourth one also. So it can become, you know… So it will be, you know, it will be a 



two dimensional matrix sort of thing. But each entry will have R value, G value, B value. So red 

green blue value. It can also have other values associated with that. So if you read grayscale, it will 

read only a matrix, okay? So that's why I am reading it in grayscale. So this is just grayscale. It’s 

just from say 0 to 255 or something like that, okay? So from white to black, or black to white, 0 to 

255. So that is the number that it would represent. And this picture actually happens to be a very 

large resolution picture. Some, I think, if i am not wrong, it's some 3000 × 4000 or some such 

very big resolution picture. So what I'm doing in the next step is to down sample it. So this is a 

way to down sample in python very easily. I can do ::8. So this, when I do colon colon, some 0 in 

the last row are filled in automatically. Zero in the last columns are filled in automatically. So it 

will just keep the every 8 × 8 value. So I am just making it a smaller matrix just for convenience. 

You can have it as a large matrix also if you want. Today's computing algorithms are quite good, 

they don't mind working with large sizes. But anyway for us the size is not so important, so we 

can work with a smaller matrix here. So there is this matplotlib.pyplot package which you can 

import. And then you can do this imshow command and you would use the cmap=‘gray’. That's 

important. Otherwise it will show you some strange colour. So if you do cmap=‘gray’ and plot this 

it will show you the image.  

So hopefully you still remember the Gajandra Circle, the two elephants and the familiar picture. 

You can see it's sort of low resolution and all that. But it's okay, I mean at least you recognize the 

picture. So this is my matrix. So this img1 is a matrix, okay? So it is some size matrix. It's just got 

values from 0 to 255 in it and it can be visualised as an image, okay? So I believe it's got 281 rows 

and 500 columns, okay? So that's this image, okay? So once I have a matrix, whatever that matrix 

may be, I can run SVD, okay? So on this image I run an SVD, okay? So I use the Numpy package 

for it which I imported there. np.linalg linear algebra module. Inside that there is an SVD function 

and I run img1 on it. So you run any matrix through this, it will give you the 𝑈, 𝐷 and 𝑉∗, okay? 

So I am just calling it U D Vs. And U is the, you know, unitary matrix with the left singular 

eigenvectors. Vs is the unitary matrix with the right singular eigenvectors and D is the singular 

values in decreasing order, okay? So it's good to plot D. So remember, it will have 281 singular 

values, right? So that's what it will show you. Or maybe 500, but the rest are all zeros, right? So 

it's not so interesting. So 281 is the non-trivial singular values. And it's good to nicely see them, 

plot them in log scale and see, okay? For such large matrices you can see look at this big drop, 

right? So there are a few eigenvalues which are, few singular values, should be careful, yes few 

singular values which are really, really large. Like, you know, 104, 105 etc. And then there is the 

sharp drop, it comes down to 103. 103 is still big. But remember the matrix entries are 0 to 255. 

So you have to have a sense of how big the, you know, the norm of every row or column is in the 

matrix. So it's quite big. So 103 maybe is not so big. Then definitely 102 and all is not big. But 

you can see this big drop. So this is sort of a nice feature you'll see. Any big matrix you take and 

find its singular values, it will have this kind of feature. It'll usually drop off quite quickly. So this 

is sort of showing you that it's, you know, the matrix, every entry in the matrix is not all that 

independent. There is some, you know, structure there when you see this drop, okay? So that's the, 

those are good interpretations to keep, okay?  



So to bring out that interpretation I am going to try and approximate this image. How am I 

approximating this image? So normally when you have SVD, you have the full matrix, no? 𝑈𝐷𝑉∗ 

, okay? I'll only take 10 columns of U and the top 10 singular values from D and the 10 rows of 

𝑉∗, okay? So maybe I should write this down. So we are writing 𝐴, 𝑈 and then you have 𝐷 and 

then you have 𝑉, okay? So this, let’s say this is 𝑉∗. 𝑈, 𝐷, 𝑉∗, right? So 𝐷 will have the singular 

values on the diagonal like that, okay? This would have the, you know, the 𝑓1, 𝑓2, …, along the 

columns and this would have the 𝑒1
∗, 𝑒2

∗, …, along the rows, right? So 𝑒1, 𝑒2, … are the, you know, 

the right singular eigenvectors. 𝑓1, 𝑓2, … are the left singular eigenvectors. 𝜎1, 𝜎2, … are the singular 

values, okay? So if you multiply the whole thing together, you will get 𝐴. Now what is this 

approximation doing? I am only going to take, say, the 10 columns here. I'll only take the 10 × 10 

here, okay? So this is 𝑚 let us say. So I will take 𝑚 × 10 and then here also I will only take, only 

on this side, I will take 10 × 𝑛, okay? So this is 𝑛. So if you do this, notice the largest sigma values 

are being accounted for, right? See 𝐴 becomes 𝜎1𝑓1𝑒1
∗  + 𝜎2𝑓2𝑒2

∗  + so on, right, all the way till the 

last one. The last one will be what? 𝜎…  
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So you can sort of write this down. So let us say 𝜎𝑚𝑓𝑚𝑒𝑚
∗ , right? So it stops there. There are 281. 

After that it's just zero eigenvalues. Let's think about how it will work out. The next ones do not 

matter. I am assuming 𝑚 is smaller than 𝑛, okay? So all of them together will give you 𝐴. And I 

know 𝜎1  > 𝜎2  > so on, okay? Okay. So if I want a good approximation, I can stop somewhere 

here, okay? So in this product I will stop somewhere here. Stop at the 10th point. Stop at 𝜎10𝑓10𝑒10
∗ , 

okay? So that is the same as in this matrix picture, stopping like this, okay? So when you do that, 



I get a pretty reasonable, I hope I will get a reasonable approximation for 𝐴, okay? So that's the 

thinking when people do these kind of approximations. So keep that in mind, okay? So that is what 

I have done here. You can see I have taken matrix multiplication. I am multiplying 𝑈 only the 10 

columns, first 10 columns, 𝐷 only the 10 × 10 and Vs also I am keeping only the 10 rows, okay? 

So this is a command for that. And then I am going to plot this img_app which is some 

approximation, okay? So you can see here I took only 10 eigenvalues. There are, singular values, 

there are 281 of them. I took only 10.  
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So notice here the, I mean some prime features have already come, right? So maybe there is some 

confusion here. On the top you can sort of maybe expect that. But at the bottom you see that this 

pattern got accurately captured. And then there are these, you know, the elephants and you sort of 

see the fountain. I mean all of us may be familiar with this picture, but still, you know, you can 

see some important characteristics sort of show up. And maybe there is some sky here. You can 

sort of see important features show up even with just 10 singular vectors taken into account, okay? 

Of course I can take more. I can take 50. and at 50 you start seeing really the, almost a pretty good 

depiction. If you take 50 singular values, you can see a pretty good depiction of the GC picture, 

okay? So this sort of visually shows you how these singular values help in matrix approximation. 

You have a big matrix and you sort of expect that there's not so much freedom in the matrix, that 

every entry was sort of independently generated, okay? So that's at the heart of assuming what 𝐴 

matrix should be, right? So if you assume that every matrix of that, every entry in that matrix is 

sort of independently generated, then you won't get any such great simplification. But you are 



expecting that there's lots of connection between the entries and those are captured by this SVD 

sort of things with the singular values being very large. So this picture of how the singular values 

fall is very typical and it's very important. So this sort of quickly tells you that there is a big drop 

here and you can use it for approximation, okay? So once again this Colab notebook you can click 

on it and open it on Colab. It’s shared with you. And this image you can replace with any other 

image. I'm not sharing this image, it's there on the IITM web page in case you want to go see it on 

the Instagram page, okay?  

All right. So that's one illustration/application of SVD that we have seen. Let's see one more. This 

is from the world of wireless communications. In particular what's called Multiple Input Multiple 

Output wireless communications. MIMO wireless communications. So in wireless 

communications there is a transmitter and a receiver. I am not going to go into great detail here, 

but just from a high level, what is the goal? The transmitter will have multiple antennas in which 

it will send something. And each antenna it will send something and the receiver will have multiple 

antennas and it will receive whatever is being sent as a superposition at the receiver, okay? So this 

is at a high level. I will write down what is there in more detail here. So you have transmitter with 

n antennas and you have receiver with m antennas. What is transmitted at a particular instance is 

a vector from the complex vector space. So each entry that this antenna transmits can be complex. 

You can talk about why it can be complex etc. Just think of complex as ordered pair of reals, right? 

So you can send a complex number. It's okay. It's not wrong, okay?  
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So you can send complex numbers here on the antennas and the gain from antenna 𝑗 on the 

transmitter to antenna 𝑖 at the receiver we will denote as ℎ𝑖𝑗 and this will also be complex, okay. 

So there is, so this needs some theory here, but I am skipping all that. Say it's complex, okay? So 

the channel is usually written as a matrix 𝑚 × 𝑛, okay? This 𝑚 and 𝑛 usually are not very high. I 

mean, not like thousands, you know, but at least in today's systems they could be 5, 10, things like 

that. It's not like, you know, very small. Today's systems, particularly the 5G systems, may even 

have very large values of 𝑚 and 𝑛, okay? So they have some connections with the, you know, 

wavelength of the EM waves being used and all that. So let's not go into great detail there. But this 

matrix sort of captures what the wireless channel would do from the transmitter to the receiver, 

okay? So conveniently you can write what is being received as a 𝐻𝑥 +  𝑧, okay? So this 𝐻𝑥 is 

basically the, you know, map, right? 𝑥 is getting transformed through the linear map 𝐻. 𝐻 is like 

a linear map. So look, notice how these linear maps start showing up in a very interesting way. 

+ 𝑧 where 𝑧 is random noise, okay? So you can see how these matrices and linear maps sort of 

show up in some way, you know. Physically what happens at the receiver is that, you know, the 

signals superpose and add, okay? Whatever electromagnetic fields that are generated at the 

antenna, they tend to superpose and add, right? So that's like the theory that we use for modelling 

it. And so linearity sort of comes in so many different ways. And by the time those signals 

propagate into your chips and all that, this is a pretty good model for what you want to receive, 

okay? So the received 𝑦 is 𝐻𝑥 +  𝑧. And 𝑧 is random noise. So this noise comes from various 

electronics at the receiver and it's unavoidable. Usually unless you go to really low temperatures, 

okay? Anyway…  
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So what is the goal? Finally you have 𝑦 = 𝐻𝑥 +  𝑧, okay? So all that theory is, I mean physics is 

fine, but finally the equation is 𝑦 =  𝐻𝑥 +  𝑧. And you have to recover 𝑥 from 𝑦, right? So that's 

the goal. So you've been given 𝑦. You have to figure out what 𝑥 is, okay? So you can say, you 

know, you want to do an inverse for 𝐻. But usually that inverse is done through SVD in a very 

clever way, because, you know, you have to be mindful of 𝑧, okay? So inverting something is 

always dangerous when you have random noise because the noise will get boosted up by that 

inverse. Inverse multiplies the noise also, right? So you have to be careful about it. So SVD gives 

you a very nice way of handling all this situation. So how is SVD used in MIMO? So this channel 

matrix 𝐻 you can do 𝑈𝐷𝑉∗ on it, right? SVD on it. And then you send the 𝑣 to the transmitter, 

okay? So maybe you have some other means of sending it. You send it to the transmitter. So the 

transmitter, instead of sending 𝑥, when it wants to send 𝑥, it will send 𝑉𝑥, okay? Now 𝑉𝑥 is okay 

because it's got the same norm as 𝑥, okay? So you will not be spending more energy than sending 

𝑥, okay? So this norm sort of represents the energy of the transmission usually, okay? So 𝑉𝑥 is 

pretty good. So you can send 𝑉𝑥 instead of 𝑥, you are not losing much there.  
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So now notice what happens when you send 𝑉𝑥 instead of 𝑥. Your 𝑦 which is 𝐻𝑥 +  𝑧, okay, the 

𝑉 and 𝑉∗ will cancel and you will simply get a 𝑈𝐷, okay? So you can see that, right? So 𝑦 equals 

𝑈𝐷𝑉∗, you are not getting 𝑥, now you are getting 𝑉𝑥, right? + 𝑧. So this will cancel and you will 

get this, okay? So that's that. So it's good. So 𝑦 is already a little bit simple. Now at the receiver 

you compute 𝑈∗𝑦, okay? So you know 𝑈 also. So you compute 𝑈∗𝑦. Now notice what happens. 

𝑈∗𝑦 is just 𝐷𝑥 +  𝑈∗𝑧, okay? So notice the only thing that multiplies 𝑧 is a unitary operator 𝑈∗ 



and that is quite okay because the norm doesn't change, okay? So the noise doesn't get blown up 

beyond what it was originally in norm. So that's very nice, okay? And what you're left with is just 

𝐷𝑥. What is 𝐷𝑥? 𝐷𝑥 is just 𝐷𝑥, right? It's just, it's a diagonal operator. And you can divide by the 

singular values in 𝐷 to estimate 𝑥, okay? So this turns out to be one of the optimal ways of receiving 

𝑦 =  𝐻𝑥 +  𝑧. As in finding out 𝑥 from 𝑦  =  𝐻𝑥 +  𝑧. And this gives tremendous intuition to 

engineers on how to design systems on the ground and how to build receivers to receive wireless 

transmissions, okay? And so much so that this kind of SVD and MIMO play an important role in 

practical cellular systems. So all your cell phones even on the communication side have SVD 

sitting there, not just on the image processing side like we saw before, okay? So this is SVD in 

action in communication. So people who do wireless communication courses probably will meet 

this at one point or the other, okay?  

The last application I want to show you is what are called recommender systems. So all of us use 

these OTT apps now. Maybe not all of us, a significant fraction of us use these OTT apps like 

Netflix and Prime Video and all that. And there's always, there’s something called recommended 

movies, okay? So maybe you're wondering how is it that people come up with those recommended 

movies, what is a strategy for doing that? It's called recommender systems. You can do it in various 

other systems also. You go to a retail company, retail website and buy on a retail website, buy 

something, it will give you some recommendations based on what you've bought before and based 

on other things. So all of that sort of depend on these recommender systems and ideas from this. 

So how does that work? So here is a picture of, here is a description of, a very loose simple 

description, not a very concrete description of how it works, okay? So let us take the movie user 

situation, right? So if you take Netflix or any other OTT platform, there are a lot of movies in that 

platform and it's got lots of users, right? Maybe lakhs and crores of users, right? And thousands of 

movies, okay? Now everybody is not going to watch every movie for sure, right? So it's not 

possible. But you can imagine a matrix 𝐴 where 𝑎𝑖𝑗 would be the rating of the movie 𝑖 by user 𝑗. 

In case user 𝑗 watches movie 𝑖, 𝑎𝑖𝑗 would be the rating, okay? So now clearly this is not a complete 

matrix. As in, everybody has not watched every movie and everybody has not rated every movie. 

So the fact that they watched that movie itself is an indication to me. It shows that, you know, 

maybe they liked it, whatever, right? So that is at one level. So even at least if they watched it, you 

know, okay, they are interested vaguely in that movie. But if they give you a rating, then you know 

for sure that, you know, they really liked it or hated it or whatever. I mean, you know, the whole 

thing about how they like the movie. But even then everybody is not going to watch every movie, 

right? So this big matrix is sort of like an incomplete matrix, you don't know many entries, you 

know only some entries, right? So that's the crux of the matter, okay? So you should remember 

that. So notice how in OTT platform where there is no connection to Linear Algebra, how matrices 

show up, see? So you notice that there are these variables, there are these variables or entities like 

users and movies, right? And these are connected, you know? Users rate movies, they watch 

movies, they rate movies. So whenever things are connected, you want to think of these entities as 

vectors and and look at their, you know, operations and all that. So you will see how this works. 



It is very neat how to think of, you know, the linear algebraic settings in places where there is no 

obvious way to have Linear Algebra, right? So this is something interesting, okay?  
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So you already have a matrix. And what is the goal? The goal I will tell you. So the ultimate goal, 

let me… You can skip this matrix factorization, latent factors for a little while. The goal ultimately 

is to predict the missing 𝑎𝑖𝑗s, okay? So forget about… I think I jumped the gun a little bit here. 

But anyway… Predict the missing 𝑎𝑖𝑗s. So this is the goal, okay? So overall goal in any 

recommender systems is to predict the missing aij. So let me just go back to the original thing. So 

I want to predict the missing 𝑎𝑖𝑗s from whatever I know from the matrix 𝐴, okay? So how do I go 

about doing it? So one very popular method uses something called matrix factorization, okay? So 

that is what I am showing you again. And use something called latent factors, okay? So you sort 

of imagine that these movies and users are vectors and sort of think of them as vectors or think of 

a vector as representing their characteristics, okay? So what is the characteristic of a movie? Maybe 

it has so much violence in it, maybe it has so much, you know, romance in it. Maybe it has so 

much comedy in it, okay? There's these genres and you want to, you want to put what fraction of 

the movie goes into the genre. Maybe it's positive-negative, right? It's not good comedy, maybe 

not good romance, not good violence, whatever. So you have positive and negative possibilities, 

right? So these are these latent factors and what people try to do from this matrix 𝐴, incomplete 

matrix 𝐴 is to come up with a factorization of the matrix. Notice how subtle this is, okay? So this 

is where the critical idea comes in. They try to come up with the factorization of this matrix 𝐴 as 

𝑄𝑃. So what is 𝑄 and what is 𝑃? 𝑄 is an 𝑚 × 𝑘 matrix, 𝑃 is a 𝑘 × 𝑛 matrix. So this would be like 



something like this, right? So it will be a 𝑄 times a 𝑃, okay? So here are movies, here are users. 

And this is this 𝑘, right? So 𝑚, 𝑛 and this is 𝑘, right?  
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So these 𝑘 are sort of latent factors. So notice the data has come in and you do not really have to 

worry so much about what this 𝑘 is and all that. Maybe experts would know. And they would come 

up with what fraction this is and all that. But we are just data driven, right? So you just take that 

data and try and do a factorization here. 𝑄𝑃. Put 𝑘s, come up with some 𝑘 columns here, 𝑘 rows 

here. And there are multiple ways to do it. There's no unique way to do it, right? So so many 

different ways. And instead of even equals, usually it's only an approximation, okay? So it's not 

equal, okay? You may not be able to exactly get it. So it's only approximation. I put equal to here. 

Notice that this is only an approximation, okay? And you want to associate, sort of think that these 

𝑘 factors are genres. But they need not be, right? So it could be anything else. I don't know what 

it is. But notice what I am going to think of. The 𝑄[𝑖, : ], right, the 𝑄[𝑖, : ] is the column here. So 

this is 𝑄[𝑖, : ], okay? This is sort of MATLAB, Python representation for the 𝑖th row of 𝑄. So this 

is the 𝑖th movie sort of represented as a vector here. Vector over these factors, okay? The same 

thing with the 𝑗th user, right? So I am going to think of this as 𝑃[: , 𝑗], the 𝑗th column of 𝑃, okay? 

And that is, that sort of represents the user, right? It represents the users liking or disliking of 

different factors of these latent factors or genres that it may be, okay? And notice 𝑎𝑖𝑗 is simply the 

inner product of 𝑄[𝑖, : ] and 𝑃[: , 𝑗], right? 𝑎𝑖𝑗, (𝑖, 𝑗)th entry, the rating or whether the 𝑗th user is 

going to like the 𝑖th movie is sort of like this inner product, okay? So notice how subtle and 

interestingly things like inner product, matrix factorization and, you know, factors that make 



people like movies, not like movies are entering this picture and how this problem of building 

recommender systems for an OTT platform, right, is being expressed in linear algebraic terms, 

okay? So this is the nice thing about how when you know the theory and when you understand the 

theory and how you can relate it to how things in practice work, how these matrix matrices are 

supposed to look, then you can use all these things and come up with very nice ideas.  
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So what is the challenge in recommender systems? So find best approximate factorization that can 

predict the missing 𝑎𝑖𝑗s properly. So you get data. So you will have this data, you can generate 

some… Take a partial 𝐴, and you would also know the ratings of some movies, keep some as 

training data, keep some as test data, right? And then try and come up with an algorithm for doing 

these kind of factorizations, okay? So a very nice application of Linear Algebra and SVD into… I 

mean, how does SVD come in? I have to show you that. So we can see how matrix factorization 

helps in picturing how recommender systems may be built, okay? Okay. So how does SVD come 

in? SVD, I mean, maybe current systems, really high flying systems today maybe they don't use 

SVD totally but SVD is a very good starting point here. Why is that? Because SVD also gives you 

some sort of an approximate factorization, right? So 𝐴 = 𝑈𝐷𝑉∗, if you write it like that, this can 

be used to build an approximate factorization which is what we did in the image also, right? You 

take only some columns, some rows, and you get an approximate factorization with 𝑘 being much 

much smaller than 𝑚 or 𝑛, okay? So, I mean, there are many more ideas today in this recommended 

systems. SVD is a good starting point for optimising such factorizations, okay? So hopefully these 

three applications give you a better grounding of how to think of matrices and how to think of 



these linear algebra and vectors and factorization, inner products and how they show up in various 

places in totally unobvious ways, okay?  
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So this is the last lecture and is a good place to stop in the course. We've seen quite a few wide 

ranging topics, okay? And these have all been summarised in the recap here. So let's just quickly 

go through that recap, okay? So all these things we saw in theory. We started with vector spaces 

over a scalar field being real or complex. And then we saw how linear maps are very interesting 

and how they are represented by matrices and this Fundamental Theorem of Linear Maps which 

relates the null space and range space dimension. And we used it to solve linear equations say Ax 

= b. So that's very powerful. Linear equations show up in so many different places. And then we 

saw four fundamental subspaces. And then very importantly eigenvalues, eigenvectors, how these 

one dimensional invariant subspaces of a linear map really capture what the linear map is. And 

this helped us in so many applications, right? So particularly eigenvalues, the eigenvectors, they 

show how, you know, linear systems evolve over time. And then even importance of certain graph 

nodes and all that. Page rank and all that. Very interesting algorithms are possible with eigenvalues 

and eigenvectors. Then we move down to inner products, norms, orthogonality orthonormal basis. 

So this gives you, this really, projections and inner products are very, very interesting. They 

measure correlations, they measure so many connections between vectors and they're very intuitive 

and very useful. And then we looked at adjoint, self-adjoint. Normal operators are very important 

classes of operators and general operators are related to them in very nice ways. And this complex, 

real spectral theorem. So it's very important how, you know, self-adjoint, normal operators have 



an orthonormal basis of eigenvectors and they become diagonal in orthonormal basis, okay? Then 

we saw positive operators, how they are connected to quadratic forms, maximising, minimising 

quadratic forms. That has a wealth of applications as well, right? Quadratic forms are also very 

useful to capture some real-life behaviour, okay? Then we saw isometries, operators which, you 

know, are like rotation, they do not change the relative behaviour of vectors, okay? So this is very 

important to know. And finally the last thing we saw was singular vector, singular value 

decomposition, singular values for a general linear map and how you get this wonderful UDV*. 

And how that gives you factorization and how that gives you abilities to use it in so many different 

applications. Approximating a matrix, factoring a matrix, in communications, how to, you know, 

modify your signals that are transmitted and received so that you can easily decode in the presence 

of noise, okay? So that's a good recap. And thanks for being along in this course. And hope you 

have enjoyed it as much as I've enjoyed putting this course together for you. And all the best. 

Thank you. 

 


