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Singular Values and Vectors of a Linear Map 

Hello and welcome to this lecture. This is the last week of this class recording and we've seen quite 

a bit of interesting ideas on how to study vector spaces, how to study linear maps, right? So linear 

maps form a huge part of the entire area. And the more we study, the better off it is, right? Better 

off we are in our understanding. So we saw for instance eigenvalues played a very important role 

in the study of linear maps, right? So they gave you one dimensional subspaces which are invariant 

and that gave you a pretty good idea of what a linear map is. In particular, if you had enough of 

these one dimensional invariant subspaces, if your operator became diagonalizable, then, you 

know, there was a very simple diagonal form in an eigenvector basis and we saw, you know, 

special type of operators like self-adjoint, normal operators for whom there's an orthonormal basis 

of eigenvectors. So those operators are very special because they become diagonal over an 

orthonormal basis. Now there is an equally powerful idea with huge applications today which is 

not based on eigenvalues, it's based on something called singular values and singular vectors. So 

like you had eigenvalues and eigenvectors, it is possible to define a notion called singular values 

and singular vectors for in fact the general linear maps, right?  

So we saw values eigenvectors are for operators, right? And now one can define these singular 

values and singular vectors and these singular vectors always end up being orthonormal, that's very 

nice, and singular values always end up being non-negative and they are there for anything. For 

linear maps, any map, whether it's from 𝑉 → 𝑊 or operator 𝑉 → 𝑉, you can define all that. So it's 

a different way of looking at a linear map, right? So eigenvalues and eigenvectors tell you, you 

know, one dimensional invariant subspaces. That's one way of analyzing it. This singular value, 

singular vectors are another way of looking at it. You will see it’s very interesting and very 

surprising how simple and elegant these singular values and singular vectors are and we will do 

that. In the first lecture, I will simply introduce what is a singular value, what is a singular vector. 

We won't prove some important results, we will do that in the subsequent lecture. But it is 

important to get a feel for what it is and what is the difference between this and eigenvalues, 

eigenvectors and see some comparisons. So we'll do that in this lecture. So let's get started.  

There's a quick recap of all that we've done so far. It's nice when the entire course is recapped into 

one page, you feel like you've got a good sense of what's going on. So we've been looking at vector 

spaces over real or complex field. We saw how a linear map has a matrix representation, the 

fundamental theorem of linear maps which is, you know, dimension of null plus range equals 

dimension of 𝑉, it's very important. We solved linear equations using the null space idea, found 



all solutions for it and these four fundamental subspaces of a matrix give you an idea of how to 

think of the linear map and all that. And then the important idea of eigenvalue and eigenvector. So 

in particular if the matrix can become diagonal with respect to an eigenvector basis, then things 

are really simple particularly with respect to powers of the matrix, right? Powers of the operator. 

So it is very useful to have the eigenvalue eigenvector notion.  
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And then we saw inner products and orthogonality, orthonormal basis. This orthonormality 

simplified a lot of things for us including basis representation and all that. And then the important 

idea of adjoint and how this adjoint sort of preserves, tells you how inner products work along 

with linear maps in a very clean way. In particular that led us to these wonderful operators called 

self-adjoint and normal operators which have orthonormal eigenvector bases, okay? So that is very 

powerful and strong. And then we saw special cases, more special cases called positive operators. 

And in fact even more special cases called isometries. These are special type of normal self-adjoint 

operators and they have their connections to, you know, quadratic forms and all that. Particularly 

the positive operators. Isometries we’ll see some connections today. And then, not, maybe not 

today... In these singular values and singular vectors, isometries will play some role, we will see 

some interesting ideas from that, okay? So this is a quick recap. Let us jump into singular values, 

okay?  

So here's the definition of a singular value of a linear map, okay? So let's take a linear map 𝑇: 𝑉 →

𝑊, vector space 𝑉 to vector space 𝑊. The singular values of 𝑇 are simply the eigenvalues of √𝑇∗𝑇, 



okay? So that is a pretty big operator written in a very compact way. √𝑇∗𝑇, okay? So 𝑇∗ is the 

adjoint of 𝑇 and this is the square root. So this is, I mean quite a few interesting properties in just 

this definition. It's an easy enough definition. But quite a few interesting properties. First property 

is - this a properly well defined thing. I mean it's not something wrong. 𝑇∗𝑇: 𝑉 → 𝑉 is a self-

adjoint positive operator. Positive is only for self-adjoint so we know that's okay. So square root 

and all exist. But before that let's just use the spectral theorem. When you use the spectral theorem, 

you're going to be able to write 𝑇∗𝑇 over this suitable basis in this very simple form, right? 

(𝜆1 𝑒1𝑒1
∗  + ⋯ + 𝜆𝑛𝑒𝑛𝑒𝑛

∗), okay? And these eigenvalues are non negative, so you can sequence 

them in, you know, decreasing order like that. Then this 𝑒1 to 𝑒𝑛 is an orthonormal basis. 𝑛 is the 

dimension. So we know this is true. From here we can define the unique positive square root, 

√𝑇∗𝑇. I never in the lectures proved the uniqueness of this. There is a proof in your book, you can 

go      take a look. It's a unique square root. So we'll pick up the unique positive square root, √𝑇∗𝑇 

which would have, you know, the basis representation in, matrix representation written in this 

form. So wherever you have lambda, you put square root, okay? So everything else remains the 

same. So the singular values of 𝑇 in this, written down in this way are simply the √𝜆1 and that 

would fall in decreasing order, go all the way to √𝜆𝑛, okay? So this is a picture of how singular 

values are defined. We will see soon enough a couple of examples in this lecture itself, it will be 

clear to you how this works. But this is the definition and this definition makes sense, okay?  
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So why is it that singular values describe 𝑇? So it looks like singular values are numbers related 

to some other maybe operator √𝑇∗𝑇, right? So why should that be connected to 𝑇? It turns out 

there is a very strong connection. We will prove it eventually in the next lecture or so. But in this 

lecture I will simply illustrate that connection with some examples, okay? But anyway, I mean you 

can also imagine why this 𝑇 and 𝑇∗ have been, I've been hinting at how 𝑇 and 𝑇∗ are sort of the 

same. So when you take √𝑇∗𝑇, you sort of expect, you know, something similar to 𝑇 in some 

sense, right? So a very rough high level picture. But that's sort of the reason why this 𝑇 and √𝑇∗𝑇, 

they have sort of an intimate connection which we will establish later on. But for now it's not 

surprising that these two are related, okay? That's that for now. We will pick it up later. 
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Okay. So what about singular vectors of a linear map? These are also very easy to define. Once 

you know the singular values, and when you see this 𝑇∗𝑇 connection, you will see that it is easy 

to define. You once again have a linear map 𝑇: 𝑉 → 𝑊, you can define 𝑇∗𝑇 which will be from 𝑉 

to 𝑉. It is a self-adjoint operator. The right singular vectors of 𝑇 what I call as right singular vectors, 

these are simply an orthonormal eigenvector basis for 𝑇∗𝑇, okay? So you pick whatever 

orthonormal eigenvector basis you want for 𝑇∗𝑇, those would be called as right singular vectors. 

So it’s sort of an easy definition in some sense, you know? Singular values are eigenvalues, 

singular vectors are simply the corresponding eigenvectors, right? The √𝑇∗𝑇 are, okay, right? 𝑇∗𝑇 

and √𝑇∗𝑇 have the same sort of eigenvector basis in some sense, right? So it's okay to define it 

with 𝑇∗𝑇 in this case, okay? So remember right singular vectors are vectors in 𝑉, okay? So that is 

something important to remember. So now you can see where the left singular vectors will come 



from. Instead of 𝑇∗𝑇, you look at 𝑇𝑇∗, okay? Remember 𝑇∗𝑇 is self-adjoint, the adjoint of 𝑇∗𝑇 is 

𝑇∗𝑇 itself. So 𝑇𝑇∗ is a different other thing, right? So if 𝑇 were an operator and 𝑇 were normal, 

𝑇𝑇∗ and 𝑇∗𝑇 will be the same. But they need not be the same, okay? 𝑇𝑇∗ and 𝑇∗𝑇 can be different. 

But of course, if it is a linear map, general linear map with 𝑉 and 𝑊 being different, then 𝑇𝑇∗ and 

𝑇∗𝑇 can have no chance of being the same, right? So because 𝑇∗𝑇 is from 𝑉 to 𝑉, 𝑇𝑇∗ is from 𝑊 

to 𝑊. But once again it is a self-adjoint operator, so I can meaningfully think of an orthonormal 

basis of eigenvectors. So if I take an orthonormal basis of eigenvectors of 𝑇𝑇∗, I end up getting 

what are called left singular vectors of 𝑇, okay? So this is the definition. Once again, right singular 

vectors are vectors in 𝑉, left singular vectors are vectors in 𝑊, they are always orthonormal, okay? 

By definition they are orthonormal, there is no, they cannot be anything else. And they are very 

easy to come up with, okay? So even for a linear map 𝑇 when 𝑉 and 𝑊 are different, these singular 

vectors are very well defined. They end up being orthonormal basis vectors of 𝑉 and 𝑊 related to 

𝑇∗𝑇 and 𝑇𝑇∗, okay? So simple definition for singular values and singular vectors.  

Let's see a couple of illustrations and computations and see some surprising properties which we’ll 

eventually prove later on, okay? So the simplest example is this 2 × 2 and I've been doing this 

[1 2; 3 4] throughout this course, so we can pick up the [1 2; 3 4] again, okay? So you have a 

matrix 𝐴, 2 × 2 which is [1 2; 3 4]. Let's say standard basis, okay? That's an easy thing to start, 

okay? We know that this matrix itself has eigenvalues and eigenvectors, you can compute the 

eigenvalues and eigenvectors. I have done them, I have done that here. So you see that you get two 

distinct eigenvalues 5.372, −0.372 that's what it seems like. I've calculated it. I’ve also calculated 

the eigenvectors, that's, one eigenvector is [0.415;  0.909], the other eigenvector is 

[0.824; −0.566]. So these are linearly independent, these two eigenvectors. But they are not 

orthogonal. You can multiply and check that it won't work out to be orthogonal. So non-orthogonal 

to be expected, right? 𝐴 is not a symmetric matrix, so you will have a non-orthogonal set of 

eigenvectors. So what is the property of eigenvectors? You can check this property. So the matrix 

itself 𝐴 multiplied by the eigenvector is going to give you eigenvalue times the same vector. You 

can check that this is true, right? So it's easy enough to see. So this is the structure of the eigenvalue 

eigenvector.  

Now I want to contrast this with the singular value singular vector picture, okay? So this picture 

itself is quite useful. We've seen that it helps you. So in fact you can write 𝐴 as 𝑆−1𝐷𝑆, okay? You 

can write with these exact eigenvectors, you know how to form the 𝑆 matrix. And 𝐴 will become 

𝑆−1𝐷 𝑆, right? So 𝐷 becomes diagonal. And so it's useful, this eigenvector eigenvalue 

representation is very useful even for this matrix. So now let's see how the singular values singular 

vectors look, okay? So we know we have to do 𝐴𝑇𝐴 and 𝐴𝐴𝑇 to go to the singular values singular 

vectors. If you do 𝐴𝑇𝐴, you will get a symmetric matrix. [10 14;  14 20]. You can verify that. 𝐴𝐴𝑇 

ends up being [5 11;  11 25]. I hope this is correct, not made a mistake here. Hopefully 𝐴𝐴𝑇, yeah, 

looks okay. Okay? All right. So I was just checking to make sure, yeah, I think it's okay. So it's 

[5 11;  11 25], okay? Even if there is some mistake, it's okay, illustration is more more important, 



okay? So the eigenvalues of 𝐴𝑇𝐴 and 𝐴𝐴𝑇, okay? We know that this is 𝐴𝐵, 𝐵𝐴, right? So the 

eigenvalues, we know all the non-zero eigenvalues have to be exactly the same, there can be more 

zero eigenvalues depending on the dimensions of 𝐴𝑇𝐴 and 𝐴𝐴𝑇. In this case both of them are same 

dimension 2 × 2, so the eigenvalues will end up being exactly the same. So you do 𝐴𝑇𝐴, 𝐴𝐴𝑇, you 

will get the same eigenvalues 29.866 and 0.134. So this is a trick you should keep in mind. So 

sometimes, you know, if 𝐴 and 𝐴𝑇 are not of the same size, 𝐴𝑇𝐴 might be much much smaller than 

𝐴𝐴𝑇. So when you want to find eigenvalues, you should be smart enough to go pick the smaller 

one and try to find it, okay? So that is something useful. But this is easy enough to see, okay? So 

once you have the eigenvalues of, say, 𝐴𝑇𝐴, I can find the singular values. Singular values are 

simply the square root of the eigenvalues. So you take √29.866, you get 5.465. √0.134, you get 

0.366. So that's the singular value.  
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It's typical to denote singular value with this 𝜎, okay? 𝜎1, 𝜎2 in that sequence. 𝜎1 ≥ 𝜎2, etcetera, 

okay? One can also find right singular eigenvectors and left singular eigenvectors, okay? For these 

two eigenvalues. In this case it's all unique and all that so you'll get the same answer. You may 

change up to sign, but only up to sign you can change, everything else will work out and it's very 

typical to write right single eigenvectors, left single eigenvectors as orthonormal basis, okay? So 

you can see 𝑒1 and 𝑒2 is an orthonormal basis for, you know, 2 dimensional ℝ2 and similarly 𝑓1 

and 𝑓2 is also orthonormal basis, okay? 𝑒1 and 𝑒2 are eigenvectors of 𝐴𝑇𝐴, 𝑓1 and 𝑓2 are 

eigenvectors of 𝐴𝐴𝑇, okay? So these are calculations you can check. I am not going to go through 

great detail for you. You can check that these are true, okay? So you see eigenvalues were defined 



in one way. You know how to calculate them, singular values and singular vectors are ending up 

in another way. I know that eigenvalues gave me the, you know, 𝑆−1𝐷𝑆 type transformation for 

𝐴, representation for 𝐴, and that helped me in so many ways. What is going to happen here, okay?  

So we will see what it does eventually, but let us look at something very interesting. So when the 

matrix operates on the eigenvector, you expect something very simple in terms of the eigenvalue 

and itself, right? So what happens when the same matrix 𝐴 operates on the right singular vector, 

right? So let us pick the right singular vectors and say the matrix 𝐴 operates on on them. Look at 

what happens. Some magic will happen here. So you take 𝐴 and multiply by the right singular 

vector, the first one here 𝑒1. 𝑒1 ends up, notice what you're getting, you will get 𝜎1 the singular 

value multiplying 𝑓1, okay? And if you take 𝐴 and multiply, I mean multiply on the right with 𝑒2, 

right? 𝐴𝑒2, the second single right singular vector, you end up getting the second singular value 

multiplying the second left singular vector, okay? So these kind of properties, this is not an 

accident. 𝐴𝑒1  = 𝜎1𝑓1 and 𝐴𝑒2  = 𝜎2𝑓2. This is the defining property for singular vectors and 

singular values, just like you have, you know, 𝐴𝑥 = 𝜆𝑥.  

Maybe I should write that alone. So 𝐴𝑥 = 𝜆𝑥 is sort of the defining property for eigenvalues 

definition. This is the defining property for a singular value singular vector definition, okay? So 

you have, you have always orthogonal. So here you have two eigenvectors, they are not orthogonal. 

Here the singular vectors are always orthogonal. And then what happens to singular vectors when 

𝐴 operates on them? They go to orthogonal vectors as a result, right? The output is still an 

orthogonal set of vectors. These two are orthogonal, they are scaled by the singular values and 

that's it, right? So it's not like it's invariant. The singular vectors are not invariant, but they sort of 

provide a very nice and complete picture of what 𝐴 is, okay? They take an orthonormal basis to an 

orthonormal basis in some sense, right? So that's the crucial idea. We will prove this eventually, 

in the next lecture or so we will prove this result and this is the essential aspect of right and left 

singular vectors and singular values, okay? So it's important to understand.  

This is one example, okay? Hopefully this was clear. Let's see one more example just to drive 

home the point of how singular values and singular vectors work and this time I will take a non-

square example 2 × 3, okay? So if you take 2 × 3, then there is no question of eigenvalues or 

anything, right? So those things do not make sense. So we have to go to singular values. When we 

go to singular values, let's look at 𝐴𝑇𝐴 and 𝐴𝐴𝑇, okay? So here you see the difference, right? 𝐴𝑇𝐴 

is 3 × 3, 𝐴𝐴𝑇 just 2 × 2. And you can look at eigenvalues of 𝐴𝑇𝐴, you will get some number, 90 

and some 0.5. Eigenvalues of 𝐴𝐴𝑇 we know what it will be, right? It will be, the two non-zero 

ones will be the same, the zero will drop out, right? That's what will happen. So the singular values 

of 𝐴 are in fact the eigenvalues of 𝐴𝑇𝐴. So it is common to, so you can take, I mean square root of 

the eigenvalues of 𝐴𝑇𝐴. So you get 9.5, 0.773 and then the 𝜎3 is zero, okay? So you get that and 

you can find right singular vectors of 𝐴. This will be the eigenvectors of 𝐴𝑇𝐴. You will get 𝑒1, 𝑒2, 

𝑒3. And once again 𝑒1, 𝑒2, 𝑒3 is an orthonormal basis for ℝ3, okay? So that's ℝ3, that is, you know, 



𝑉 to 𝑊, right? 𝐴 is from 𝑉 to 𝑊. 𝑉 is ℝ3. 𝑊 is ℝ2. So 𝑒1, 𝑒2, 𝑒3 is an orthonormal basis for ℝ3, 

okay? So this corresponds to the eigenvectors of 𝐴𝑇𝐴, the orthonormal basis eigenvectors of 𝐴𝑇𝐴.  

Similarly, you can also find left singular values of 𝐴. Now this will be now left singular vectors of 

𝐴. I'm sorry, these will now be an orthonormal basis for ℝ2, okay? So this is different, right? The 

range is in a different vector space. But still the orthonormality will be satisfied, okay? So this is 

sort of gives you an idea of how it works. So even when eigenvalues are not properly defined, you 

can say something with singular values, okay? So again you test this little result that we have. 𝐴𝑒1 

is again 𝜎1𝑓1. 𝐴𝑒2 is 𝜎2𝑓2. 𝐴𝑒3 is 0, okay? So you notice what's going on here. So there is an 

orthonormal basis which transforms through 𝐴 to another orthonormal basis and the singular 

values are the scaling factors that come in the middle, okay? So this is a very powerful description 

for any linear map. So is it true for any matrix, okay?  
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So these are the questions we have to ask. We'll ask this and we'll answer these questions in the 

next lecture. But in this lecture this, I mean I hope you see the magic of what's going on. So we 

are able to find an orthonormal basis which when hit with a matrix 𝐴 takes you to an orthonormal 

basis. That ends up being the huge simplification here and it's all connected to this 𝐴𝑇𝐴 and 𝐴𝐴𝑇 

and its eigenvalues and eigenvectors, okay? So hopefully these two examples give you a feel for 

how to work with singular values and singular vectors. And always remember this 𝐴𝑇𝐴, 𝐴𝐴𝑇, one 

of these will be smaller, okay? So you should just go there, go to that and then go to the smaller 

one and then work with that, okay? So work with that eigenvalue and those eigenvectors and then 



𝑓1 and 𝑒1 you can find through these relationships, right? So it's all easy to sort of do. You don't 

have to do a lot of work for these small size problems. But of course today SVD is one of the, is 

the heart and soul of any numerical implementation of linear algebra. In fact all problems, any 

linear algebra thing that you ask a computer program to do with a matrix, it will first find SVD, 

okay? And all answers about the linear map can be given from the SVD, okay? So you'll see why. 

I mean, we will see later on in more detail why it's, this SVD is so powerful. Singular value 

decomposition and singular values and singular vectors are so powerful. And they give you a very 

succinctly nice description of any linear map, okay? So this is just a numerical illustration at this 

point. We will see more proofs and more properties later on, okay?  
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So at the heart of all of this is this. All sorts of connections between null space, range space of 𝑇, 

𝑇∗, 𝑇∗𝑇, √𝑇∗𝑇 and 𝑇𝑇∗ , okay? So these are all the various things that are going on here and they 

are from various spaces to other, that's written down here. And the nulls and ranges are all strongly 

coupled and connected, right? And we've seen how to work with these before. The whole bunch 

of results we saw on what happens when you multiply two operators, right? When you compose 

two operators, how do you think of the null space of that and all that. But, you know, 𝑇 and 𝑇∗ 

have a very special connection. So you can use that and then simplify all the properties. So I am 

going to write down four different properties. They may be a little bit confusing, but think about 

them clearly, you will get a good idea and that is very critical in our proofs and other things that 

we do, okay? So this is important to understand.  



So the first is 𝑇 and 𝑇∗. This is standard. right? So any 𝑇 and 𝑇∗, null 𝑇 is (range 𝑇∗)⊥, okay? And 

the same thing with 𝑇∗. Instead of 𝑇 if you put 𝑇∗, you will get null 𝑇∗ is (range 𝑇)⊥. And from 

this you can conclude that range of 𝑇 and range of 𝑇∗ have the same dimension, okay? This is true 

for any operator 𝑇, we know that this is true, right? So once you have something like this, it turns 

out... See null of 𝑇∗, null of 𝑇 is range of 𝑇∗. So if you look at 𝑇∗𝑇, right, the only way to get the 

null of thing is to make 𝑇 itself null because, why? Because range of 𝑇 and null of 𝑇∗ have a trivial 

intersection, right? So range of 𝑇 and null of 𝑇∗ are actually orthogonal complements, so they do 

not intersect at all. So the null of 𝑇∗𝑇 is going to be equal to null of 𝑇. So this is a crucial 

relationship. So because of this, range of 𝑇∗𝑇 which will have to be null 𝑇∗𝑇 orthogonal 

complement, right? This, why is this true by the way? The first part, why is this true? This is true 

because 𝑇∗𝑇 is self-adjoint, okay? So 𝑇∗𝑇 is self-adjoint. Once you have a self-adjoint operator, 

its range is the orthogonal complement of its null. Now what is null 𝑇∗𝑇? It is the same as null 𝑇. 

So (null 𝑇)⊥, what is (null 𝑇)⊥? From here, range 𝑇∗, okay? So range 𝑇∗𝑇 and range 𝑇∗ are 

exactly the same, okay? All right? They are equal. There's not, there's no difference here, okay? 

It's not just dimension or anything, they are actually equal. Now if you look at dimension, so 

dimension of range 𝑇∗𝑇 becomes dimension of range 𝑇∗ and that is equal to the dimension of 

range 𝑇 also, okay? So in dimension, all of these things are the same. So that's, it adds to my notion 

that, you know, 𝑇, 𝑇∗ and 𝑇∗𝑇, 𝑇𝑇∗, share a lot of these important properties. And that's why it's 

interesting to look at them, okay?  
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All right. So this is the second one. Let's go to the third one which talks about √𝑇∗𝑇. So now if 

you look at √𝑇∗𝑇, how do you sort of see this? So you see that, you know, 𝑇∗𝑇 equals √𝑇∗𝑇 times 

√𝑇∗𝑇. Now all these are self adjoint, right? So these two are both self adjoint. So what will happen? 

The range of 𝑇∗𝑇 and null of √𝑇∗𝑇 will be orthogonal complements, right? So at this point if you 

see, null of √𝑇∗𝑇 is the (range √𝑇∗𝑇)
⊥

, okay? So because of this, right? The only way to make 

𝑇∗𝑇 null is to also have √𝑇∗𝑇 null, going to the null space, right? So because the range of this and 

the null of the next one will have no intersection, have a trivial intersection, okay? So that is why 

null of √𝑇∗𝑇, because of the self-adjoint property is equal to null of 𝑇∗𝑇 and null of 𝑇∗𝑇 is the 

same as null of 𝑇, okay?  

So range is also the same, right? So dimension… Means same in the sense, you know, very similar 

description to before. So dimension of range of √𝑇∗𝑇 is also equal to dimension of range of 𝑇, 

okay? So this is important to know, okay? So 𝑇∗𝑇, √𝑇∗𝑇, all of them have the same range 

dimensions, okay? And this will be useful for us later on, okay? So hopefully that gave you a clear 

idea.  

(Refer Slide Time: 29:52) 

 

So finally what about 𝑇𝑇∗? So far I've been talking about 𝑇∗𝑇. If you want to do 𝑇𝑇∗, simply take 

any of these relationships and instead of 𝑇 you replace with 𝑇∗, right? So that's the idea. You do 

that. So how do you get from here to here for instance? Put 𝑇 equals 𝑇∗, okay? So you replace 𝑇 

with 𝑇∗, you will get null of 𝑇𝑇∗ is null of 𝑇∗ and that's (range 𝑇𝑇∗)⊥, right? So null and range 



are the same. So range 𝑇𝑇∗ is (null 𝑇∗)⊥ and that's range 𝑇, okay? So this is also important. Range 

𝑇𝑇∗ is range 𝑇, okay? So just like we had here, right? Range of 𝑇𝑇∗ is the same as range of 𝑇, 

okay?  

So if you want more pictures… So let us say this is 𝑉 and this is 𝑊. 𝑇 takes you from here to here. 

𝑇∗ takes you from here to here. So range of 𝑇 will be somewhere here, right? So this is range of 𝑇 

let us say. What is 𝑇∗, and then 𝑇? So if you take 𝑇∗ and then 𝑇, okay, so you will have a range of 

𝑇∗ here. So these two have the same dimensions. Maybe I didn't draw it correctly. Maybe I should 

do that. Just cut it short a little bit so they have the same dimension. These two have the same 

dimension. So if you do this, 𝑇∗ and then 𝑇, you go back to the same range, okay? So the range of 

𝑇∗𝑇 is the same as range of 𝑇, okay? And then look at √𝑇∗𝑇, okay? So if you look at range of 

√𝑇∗𝑇… So you have null 𝑇, right, null 𝑇, okay? So null 𝑇, okay, null 𝑇 and range 𝑇∗ are orthogonal 

complements. So they allow only a trivial intersection, right? null 𝑇. And null 𝑇 is the same as null 

of √𝑇∗𝑇, okay? So the √𝑇∗𝑇 is both of these are same.  

And you know, right, so null is the same. So if you want to look at the range, you will end up 

getting the range of 𝑇∗, right? So if you take the orthogonal complement of this… So range of 𝑇∗ 

is the same as range of √𝑇∗𝑇, right? Range of 𝑇∗ is the same as range of 𝑇∗𝑇 is the same as range 

of √𝑇∗𝑇, okay? All of these have the same range. You can also write similar expressions for range 

of 𝑇 and range of 𝑇𝑇∗, okay? So they all have the same range, they all have the same null, okay? 

So this is also equal to null of 𝑇∗𝑇, okay? So hopefully you see the picture. These are two 

orthogonal complements and they all are the same, okay? So as far as sizes and everything is 

concerned, they are the same. The dimensions are the same, okay? And they also have more 

intricate connection, particularly the square root. I will show a very very close and intricate 

connection in the next slide and that will give you what is called the singular value decomposition 

and that is very very powerful and finally it will connect all that we've been seeing as illustrations 

in this class, okay?  

So this slide was maybe a little bit confusing. But it’s sort of important to know how all these null 

spaces and range spaces are very directly and closely connected in terms of just being equal and 

dimensions being same and all that, okay? So I’ll stop here. We saw two or three nice illustrations 

of how to compute singular values, how to compute left singular vectors, right singular vectors 

and the wonderful relationship between them, okay? A times a right singular vector is singular 

value times a left singular vector, okay? So that's a very critical relationship. And singular vectors 

are always orthonormal and that will lead us to what's called singular value decomposition and 

polar decomposition. And we'll see that in the next lecture. Thank you very much. 


