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Hello and welcome to this lecture. In this lecture, we are going to study specific types of 

operators which are called isometries. Now we have already been studying different types of 

operators. Maybe all of it is getting a bit clouded in your head. But towards the end we will also, 

you know, sort of summarize and… Maybe not in this lecture, maybe in some other lecture we 

will summarize all the various different types of operators and what to keep in mind etc., you 

know? I mean, so it will eventually, hopefully will be easier for you later on. But for now let's 

just go through the various types of operators and what they mean.  
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So already we have seen, you know, self-adjoint, normal operators. The basic thing to remember, 

so always it's confusing as to, I mean, you may remember the definitions, right? Self-adjoint is 

𝐴 = 𝐴∗. Normal is 𝐴𝐴∗  =  𝐴∗𝐴. But what is the crucial defining property? So for self-adjoint 

and normal, the crucial defining property is that they have an orthonormal eigenvector basis, 

right? So that's a very strong property and that gives a lot of properties, other properties that you 

may expect from these kinds of operators. And then there were these positive operators, which, 



on top of being self-adjoint, they also have these positive eigenvalues. So that gives them a 

square root. And they behave in some very nice way. The quadratic form becomes non-negative. 

And then we saw how these operators and the spectral theorem help you solve optimization 

problems in a very nice way. And then now we are looking at another type of operators which 

are called isometries, okay?  

 

So isometries are very special and they are also very simple. You'll see all these results are 

simple in some ways, but they just sort of add up together in a very interesting non-trivial way. 

For instance, the projection operator is a great example, right? So projection operator has a basic 

definition and then you see it's self-adjoint, you see that it's positive, all these nice properties 

come about in a very interesting way for operators, okay? So let's go ahead and study isometries 

and complete the picture as far as type of operators are concerned, okay? So here's a brief recap 

of what we've been studying. Let me just skip it for this time. Let's proceed, okay?  
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So when we want to look at isometries… Isometries basically mean you can sort of split it as Iso-

metry. So iso means something that remains the same metric usually is the norm, right? So 

isometry, when you think of an operator as an isometry, it is an operator that does not change the 

norm, right? So that's sort of like a meaning from the word itself. We'll define it formally soon 

enough, but that's what we're looking for. We're looking for operators which do something to the 

vector but do not change the norm, okay? So if you take, once again, inspiration from what we 

know from two dimensions, we have always been doing it, right? So we've been starting with 

two dimensions, looking at some property and then we are seeing how to generalize that, right? 



So if you're looking at two dimensions, we already know a very popular operator which does 

this, right? So that is rotation by an angle theta. This is a famous matrix.  

[
cos (𝜃) −sin (𝜃)
sin (𝜃) cos (𝜃)

]If you put an (𝑥, 𝑦), if you operate with this 𝑅, you get that (𝑥, 𝑦) rotated by 

that angle 𝜃, right? So it's easy to show. Now if you look at it a bit more closely, it’s sort of an 

interesting operator, as in it does not have any real eigenspace, right? So, because it rotates by an 

angle 𝜃. So unless 𝜃 is zero, right? So it does not really fix any line through the origin. Every 

line through the origin gets rotated. So there is no real eigenspace. So when you view it in the 

real, as a real space, so it's a bit of a challenge to look at this. But if you go to complex, once 

again it doesn't change the norm when 𝑥 gets multiplied by this. But there are eigenvalues and 

eigenvectors when you view this as a complex operator, operator on a complex space, right? So 

this is something interesting to remember.  

 

There is one more type of operator which is basically reflection about a line, and that also fixes 

the norm, right? So here's an example. [1 0;  0 − 1] which is reflection about the x axis, right? 𝑥 

goes to 𝑥, 𝑦 goes to −𝑦, okay? And this one you can see has a proper eigenspace representation, 

the x axis is an eigenspace, y axis is an eigenspace. x axis is fixed, right? So whenever you have 

an eigenvalue 1, it means there is a line which is fixed, right? And that acts like a, you know, 

axis of the reflection, or axis of the rotation or something like that. So that is a eigenvector with 

eigenvalue 1, okay? Nothing gets changed on that, okay? y axis sort of gets flipped, okay? 

Because of the eigenvalue -1. So a couple of interesting examples of operators in two dimensions 

which are isometries, they do not change the norm of the input, right? The output norm equals 

input norm, okay? So this is a property that we can see. So now of course our question is how 

does this generalize to an arbitrary vector space. Now if you’re thinking of an arbitrary vector 

space, thinking of an arbitrary operator, when is it an isometry? What are the various 

characterizations for isometries in arbitrary vector spaces? Maybe larger dimension vector spaces 

or even arbitrary abstract vector spaces. So that is where we are going to go forward. But we’ll 

keep this as sort of our inspiration and see if something interesting or something similar to this 

happens in arbitrary vector spaces also, okay? So let us go ahead.  

 

Here is the definition of an isometry. You have an inner product space over ℝ or ℂ and operator 

𝑇: 𝑉 → 𝑉 is called an isometry if ||𝑇𝑣|| = ||𝑣|| ∀ 𝑣, okay? So this is what I meant by saying iso-

metry. It does not change the norm, right? So the metric or the norm of 𝑣 is not affected by 𝑇, 

okay? So what kind of operators are isometries? That's our main goal in this lecture, we'll try to 

characterize all the properties that it might have, okay? But let's slowly work our way through, 

look at a few examples, get some ideas and see where we go, okay? So first example is a 

diagonal example, right? So always when you are in doubt about operators, you always look for 

a diagonal example, right? So diagonal is very simple, it will give you a lot of good ideas on how 

operators will work. So if you were to pick a diagonal operator, okay? Here is an example. If you 

have 𝜆1 to 𝜆𝑛 on the diagonal, everything else is 0, then the only condition you need is: absolute 



value of 𝜆𝑖 should be equal to 1. Anytime this is true, it is an isometry, right? So you can see that 

if you operate it with 𝑥, you simply have, you know, [𝜆1𝑥; 𝜆2𝑥] etc. And then you take ||𝐴𝑥||, 

you only get, you know, |𝜆1|2|𝑥1|2  + etcetera. And if |𝜆𝑖|
2 = 1, then it goes back to the original 

norm, okay? So this is a very powerful example to keep in mind. A diagonal with absolute value 

1 is an isometry, okay? So, I mean, when you say absolute value 1, you are thinking of the unit 

circle, isn't it? 𝑒𝜄𝜃, in complex numbers, you are thinking of 𝑒𝜄𝜃. If you are in real space, it’s only 

−1 and +1, okay? So that is a nice example to have, okay? So another interesting example. And 

this is an example in three dimensions and you can see this will also be some sort of a rotation, 

right? It fixes the 𝑥, but then 𝑦 and 𝑧 gets rotated by 𝜃, okay? In the yz plane, you rotate by 𝜃, 

okay? So this is an interesting idea as well, and this has a, you know, you can say the x axis is 

fixed by this rotation. So x axis is the axis of rotation and then you rotate about the, rotate in the 

yz plane, you rotate by 𝜃, right? So 𝜃 anticlockwise, okay? So that is clearly a rotation as well. 

And you can prove it, you can write down 𝑥 and then ||𝐴𝑥||, assume complex also, assume 𝑥 is 

complex and then write it down, you'll see ||𝐴𝑥|| will be equal to ||𝑥||, okay? So this is also an 

example. So these are typical examples. 𝐴, for instance, the second one is also a, you know, you 

can think of it as an isometry in real space, right? It's interesting that way. And 𝐴 is actually real, 

complex, everything. And so there is no problem here, okay? Hopefully these examples give you 

an idea of how isometries are going to look. They're going to look sort of similar to what we had 

in the 2D example, right? Not very different.  
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So a couple of other terminologies that you should know. In real spaces, isometries are also 

sometimes called orthogonal operators. These are called orthogonal matrices, orthogonal 

operators, you will hear this. And also in complex spaces, isometries are called unitary operators 

also, you know, unitary matrices, okay? So just like, you know, we kept saying self-adjoint. But 

self-adjoint in complex is called hermitian, self-adjoint in real is called symmetric, like that there 

are multiple names. And here again isometry is what is a name that we are using. In real spaces 

it's called orthogonal, complex basis it's called unitary, okay? So this is the definition. Hopefully 

the definition is clear. Let's see what the definition means. You'll see in the characterization, we 

will do a lot of simplification, okay? One interesting question we can ask is, see again, we asked 

in the examples, we looked at when are diagonal matrices, when do diagonal matrices become 

isometries? We saw that the absolute value of the diagonal value, diagonal entries should be 

equal to one, okay? Now normal operators is another question you can ask. Normal operators are 

almost diagonal, right? There is a basis, orthonormal basis in which it is diagonal. So you can 

sort of extend that diagonal idea to normal also.  
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Supposing 𝑇 is a normal operator. I know 𝑇 can be written in this form where {𝑒1, … , 𝑒𝑛} is 

orthonormal. You have an orthonormal basis of eigenvectors. 𝜆1 to 𝜆𝑛 is eigenvalues for 𝑇, 

okay? We know all this. This comes from the spectral theorem, okay? I am looking at complex 

space here, okay? So if you start with an 𝑥, you can write 𝑥 as a linear combination of 𝑒1 to 𝑒𝑚, 

okay? ||𝑥||
2
 of course is |𝑥1|2  + ⋯ +  |𝑥𝑛|2, okay? If you look at 𝑇𝑥, okay, so what is 𝑇𝑥? If 

you have 𝑥 equals this, 𝑇𝑥 is simply 𝜆1𝑥1𝑒1  + ⋯ + 𝜆𝑛𝑥𝑛𝑒𝑛, okay? It’s almost like a diagonal, 



right? So 𝑥1 gets multiplied by 𝜆1, 𝑥𝑛 gets multiplied by 𝜆𝑛, that is what happens. This matrix, 

this operator is diagonal in this basis. So this is what you get. So ||𝑇𝑥||
2
 is simply this. It’s 

almost like it’s diagonal. Same thing. I mean whatever we did with diagonal will hold good here 

also. So we see that a normal operator is an isometry if every eigenvalue has absolute value one, 

okay? So that is the simple result here. It is sort of similar to the diagonal result, but except that, 

you know, it is true for the normal operator also, okay? So that is interesting.  

 

So what is interesting is, when we finally characterize, we will see that there are no other 

isometries. So I mean all isometries have to be normal, okay? Of course, there is this complex 

problem here, but anyway it's okay, I mean real numbers after all are inside complex numbers so 

it's not a big deal. So that you, one can sort of say that there are no other isometries. All 

isometries will have to look like this, okay? So this will be a powerful characterization that we 

will do to characterize isometries, okay? So that is the next slide, okay? So this slide gives you 

the complete sort of characterization for an isometry, okay? We are going to start with an inner 

product space over real or complex and 𝑆: 𝑉 → 𝑉, okay? And once again we are doing this all of 

the following are equivalent, okay? So we've been doing this quite often. When we say, list a 

bunch of things and say they're all equivalent, any one implies all the others, right? So that's what 

it means. And how do you prove it? You sort of prove it in sequence. 1 implies 2 implies 3 

implies 4 implies 5 implies 6, and 6 implies one. So there is a cyclical thing. So anywhere you 

start, you will go back and imply everything, okay? So that's the idea, okay? So what it means, 

let's just quickly go through them. First is: if 𝑆 is an isometry, we know that, you know, ||𝑆𝑢||  =

 ||𝑢||, ||𝑆𝑣||  =  ||𝑣||. Not only that, isometries will have to preserve inner products, okay? If 

you have two vectors 𝑢, 𝑣 and they had a certain inner product before you hit it with 𝑆, after you 

hit with 𝑆 also < 𝑆𝑢, 𝑆𝑣 > have to have the same inner product. Remember, in the definition of 

isometry, we mentioned, we did not expect all possible inner products to be fixed, right? So we 

just said norm has to be fixed. But just because norm is fixed, inner product also has to be fixed, 

okay? So it's a very interesting little result. We'll prove it, you'll see maybe some of, you can 

think of the proof itself. The proof will work out quite nicely. So isometries preserve inner 

products also, okay? For two different vectors, okay?  

 

So once you preserve inner product, the other results are easy. So if you have an orthonormal set 

of vectors, after you hit it with 𝑆, you will still be orthonormal. Of course, all inner products are 

preserved, so it will still be orthogonal, okay? Now the next result, right? There exists one 

orthonormal basis such that this is true. Of course if, you know for every orthonormal basis this 

is true, so of course you pick one orthonormal basis that you like and this will be true. The 4 is 

not too bad, but you know, it's sort of like, you know, 4 implies 1, okay? So that is why you 

should see why that 4 makes sense. If there is at least one orthonormal basis so that after 𝑆 you 

are, you continue to be orthonormal, then 𝑆 is an isometry, okay? 𝑆 will fix every, I mean, will 

preserve every inner product. 𝑆 will preserve every norm, okay? So that's what, that's how you 

read it. That's why this 4 is interesting, okay? Now the next step brings in the adjoint, okay? So 



once you have that, it turns out the adjoint-product, operator-adjoint product 𝑆∗𝑆 =  𝑆𝑆∗  =  𝐼 

which is the identity, okay? So it's a powerful result. So far we have not seen something of this 

type, right? We have not really seen operators of this type. So this also means of course 𝑆 is 

invertible and 𝑆−1 = 𝑆∗, okay? So we saw one example when you put the orthonormal vectors 

one after the other, you know? That, for that matrix, 𝑆−1 is 𝑆∗, right? So it's, we've seen this 

before, but, you know, isometry is the actual name for the operator, when you have 𝑆−1 = 𝑆∗, 

okay? And from here it's also clear that 𝑆∗ is an isometry, okay? So 𝑆 is isometry, it's adjoint is 

an isometry. 𝑆𝑆∗  =  𝑆∗𝑆 =  𝐼. So a lot of interesting things come about because of these 

properties, okay? So we will quickly prove it and then we will state a few more results and that 

will be the conclusion of this lecture, okay?  
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So let us prove it. So 1 implies 2. Why does it, if norms are preserved, why do inner products 

have to be preserved? The reason is, you can define inner products in terms of norms, right? So 

we have seen this before in one other proof earlier when we looked at self-adjoint, okay? So if 

inner products… Inner products can be defined using norms, okay? So given a norm, you can go 

back to the inner product. So if norms are preserved under 𝑆, inner products will also be 

preserved under 𝑆, okay? So I can just show you one little writing, okay? So if you have this, so 

< 𝑆𝑢, 𝑆𝑣 >=
(||𝑆(𝑢+𝑣)||

2
−||𝑆(𝑢−𝑣)||

2
)

4
 okay? In the real case. In the complex case also the same 

thing works out. And so how did I get 𝑆(𝑢 + 𝑣)? 𝑆𝑢 +  𝑆𝑣 is 𝑆(𝑢 + 𝑣), right? And now if 𝑆 is 

going to be preserving norms, 𝑆 is an isometry, right? 1 implies 2. So 𝑆 is an isometry. So 𝑆 

preserves norms. So that is simply equal to ((𝑢 + 𝑣)2  −  (𝑢 −  𝑣)2)/4, and that is equal to  



< 𝑢, 𝑣 >, okay? Same thing in the complex case. So you can show quite easily because inner 

products can be computed using norms and… Linear combination norms, you know, not 

something else. If you preserve norms, you have to preserve inner products also, okay? So that's 

a nice thing to know, right? So angles are preserved by isometries, right? Norms are preserved. 

And if you have two vectors, the angles between them are sort of preserved by isometries. It's a 

good intuition to build up in terms of how isometries work.  

 

(Refer Slide Time: 19:31) 

 
 

Okay. So, I mean, 2 implies 3, 4 is sort of trivial once you have the inner product being 

preserved. If 𝑒𝑖 are orthonormal, < 𝑆𝑒𝑖, 𝑆𝑒𝑗 > = < 𝑒𝑖 , 𝑒𝑗 >. So if 𝑒𝑖, 𝑒𝑗 are orthogonal 𝑆𝑒𝑖, 𝑆𝑒𝑗 

will be orthogonal, everything is okay, right? So it is, the norms are also the same. So 2 implies 

3, 4 is quite easy. Hopefully you see 3 and 4 are sort of the same thing, right? If, I mean, any 

inner product space has an orthonormal basis. So once you have an orthonormal basis, you take 

that, you operate with 𝑆, you're going to get another orthonormal set. So 3 and 4 are sort of the 

same, okay? Now 4 to 5 maybe needs a little bit of work, it's not too hard, okay? So 4 is what? 4 

is: there is an orthonormal basis, so maybe I should write that down… So 4 basically says 

{𝑒1, … , 𝑒𝑛} is an orthonormal basis and {𝑆𝑒1, … , 𝑆𝑒𝑛} is also an orthonormal basis, okay? So 

what happens when I do < 𝑆𝑒𝑖, 𝑆𝑒𝑗 >, okay? This is my starting point here. That will be equal to 

< 𝑒𝑖, 𝑒𝑗 >, right? So that I know, right? So any 𝑒𝑖, 𝑒𝑗 take, < 𝑆𝑒𝑖, 𝑆𝑒𝑗 > = < 𝑒𝑖 , 𝑒𝑗 > because this 

is just orthonormal, right? So this is also orthonormal. This is also orthonormal. This is true. 

Now this guy we can write like this, okay? So you take one of these 𝑆's to this side. So you see  



< 𝑆∗𝑆𝑒𝑖, 𝑒𝑗 > = < 𝑒𝑖, 𝑒𝑗 >. So notice this again. So I am getting < 𝑆∗𝑆𝑒𝑖, 𝑒𝑗 > = < 𝑒𝑖, 𝑒𝑗 >

∀ 𝑖, 𝑗, okay? For all 𝑖, 𝑗, this is true, okay? So this is… Okay? 
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So this is a powerful property. So notice < 𝑒𝑖, 𝑒𝑗 >. < 𝑆∗𝑆𝑒𝑖, 𝑒𝑗 >. So you can write it in the 

other way also if you like. < (𝑆∗𝑆 −  𝐼)𝑒𝑖, 𝑒𝑗 > =  0, okay? So if you want, you can write it like 

this. So you see this 𝑆∗𝑆 is going to be equal to 𝐼, if you just look at 𝑒𝑖, 𝑒𝑗. But 𝑒𝑖, 𝑒𝑗 is actually a 

basis, okay? So from here you can go to arbitrary 𝑢, 𝑣 if I can show that this, instead of 𝑒𝑖, 𝑒𝑗, I 

can put 𝑢, 𝑣 here, then I am done. And because 𝑒𝑖, 𝑒𝑗 is a basis, that will also work, okay? So that 

is the basic idea. So let’s see how that is done. If you take an arbitrary 𝑢 which is some linear 

combination of 𝑒1 to 𝑒𝑛, and another 𝑣 which is a linear combination of 𝑣1 to 𝑣𝑛, you can look at 

< 𝑆∗𝑆𝑢, 𝑣 > and then write 𝑢 and 𝑣 in terms of this expansion and use linearity and, you know, 

other properties, simplify, bring it out. You will end up getting < 𝑆∗𝑆𝑒1, 𝑒1 > and then you can 

just drop the 𝑆∗𝑆 as long as you have only 𝑒𝑖, 𝑒𝑗 here, and then bring in the 𝑢𝑖 , 𝑣𝑖 inside, okay? 

And then combine it again, you will get 𝑢, 𝑣 okay? So it’s just a simple thing. So you show it for 

an orthonormal basis. It is true for arbitrary vectors as well. So < 𝑆∗𝑆𝑢, 𝑣 > =< 𝑢, 𝑣 >. So 𝑆∗𝑆 

has to be equal to 𝐼, right? So for all 𝑢, 𝑣, this is true. So it is equal to 𝐼, okay? So that is the 

proof to go from 4 to 5, okay? So once 𝑆∗𝑆 becomes equal to 𝐼, if you remember, 𝐴 and 𝐵 are 

operators and 𝐴𝐵 = 𝐼, then 𝐵𝐴 = 𝐼. So we have seen this is true, right? So this is from… Very 

old results in basic operator theory. We have seen when we studied invertible operators, we saw 

that if 𝐴𝐵 is 𝐼 then 𝐵𝐴 is also 𝐼. So if 𝑆∗𝑆 is 𝐼 then 𝑆𝑆∗ is also 𝐼. So clearly this means 𝑆 is 

invertible and 𝑆−1 = 𝑆∗, okay? So this is the definition of invertibility. You can go back and 



check your very early results on operators, I mean without any eigenvector, any inner product or 

something we proved it, right? So this is true. The inverse is unique and all that we have proved 

before. So this comes directly from that, okay?  

 

And the last proof is to show that 5 implies 6 and 1. So 5 is, you know, 𝑆𝑆∗  =  𝑆∗𝑆 =  𝐼. And 

that implies 𝑆∗ is an adjoint and also that… 𝑆∗ is an isometry and also that 𝑆 is an isometry, 

right? So that is going full circle, right? 5 implies 6 and 1, that is very easy to show, okay? It’s 

not very hard. You look at ||𝑆∗𝑣||
2
 is inner product < 𝑆∗𝑣, 𝑆∗𝑣 > and then 𝑆 comes this side, 

𝑆𝑆∗ is 𝐼, you get that same thing with ||𝑆𝑣||
2
, < 𝑆𝑣, 𝑆𝑣 >, < 𝑆∗𝑆𝑣, 𝑣 > and then 𝑆∗𝑆 goes away. 

So this, once you have, you know, 5 is what, 𝑆∗𝑆 =  𝑆𝑆∗  =  𝐼, so once you have that being 𝐼, 

the way the norm becomes same is also true, okay? So this has completed the proof.  
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So let me just quickly go back and remind you of all the powerful characterization. So this is 

the… 5 is sort of the most powerful characterization, right? If 𝑆 is an isometry. And 2 also is 

important. If 𝑆 is an isometry, inner products are preserved, not just the norms. And then you 

have this nice 𝑆∗𝑆 =  𝑆𝑆∗  =  𝐼, operator-adjoint product is actually equal to identity, okay? So 

that's a very powerful relationship. And that is sort of if and only if. If an adjoint is also an 

isometry. Everything works out in that, okay? So this is sort of a complete, nice characterization 

of what isometries are, okay? So a couple of corollaries. These are very quick and easy 

corollaries. Every isometry is normal, right? So 𝑆∗𝑆 =  𝑆𝑆∗  =  𝐼. So clearly 𝑆𝑆∗  =  𝑆∗𝑆. So 

that is normal, okay? So it's a little more than normal, but of course it's normal for sure, okay? 



And if you think in terms of matrices, okay… So let us say somebody gives you a matrix and 

you want to find out if it is an isometry or not. What do you do, okay? Matrix represents an 

isometry if and only if the rows and columns have to have unit norm and any two rows or 

columns have to be orthogonal, okay? So it is basically the columns should be an orthonormal 

basis, rows should be an orthonormal basis, okay? If that is true, then it's an isometry, otherwise 

it's not, okay? So it's a very straightforward way to define it, okay? So you can go back and 

check all our examples. So you will see that whenever we had an isometry, all the columns will 

be an orthonormal basis, all the rows if you take them together, you will have an orthonormal 

basis. Maybe I should write that down, that is easy. So in terms of matrices, all, matrix of an 

isometry. Columns form an orthonormal basis. Rows also form an orthonormal basis. So 

basically what is isometry doing, right, if you think about it, once you have this characterization, 

isometry is simply taking your coordinates and then, you know, multiplying by some 

orthonormal basis. So basically you're just simply moving to another basis which is in the, which 

is orthonormal in some sense, right? So it's sort of simple in that way. So this characterization is 

a very nice and complete characterization for isometry.  
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Okay. So finally if you are in complex space, if you are not worried so much about being real, 

your eigenvectors being real and eigenvalues being real and all that, once you go to complex 

vector space, you can very easily characterize isometries using another way also, okay? 𝑆 is an 

isometry if and only if 𝑆 is normal, right? Normal meaning there is an orthonormal basis of 

eigenvectors, right? So that is the same as normal. And every eigenvalue has to have an absolute 

value 1, okay? So this is, there exists an orthonormal basis of eigenvectors of 𝑆. This is the same 



as normal, right? So if 𝑆 is normal and absolute value of its eigenvalues, every eigenvalue has 

absolute value 1, then it is an isometry, okay? If 𝑆 is an isometry, 𝑆 is normal and eigenvalues 

have absolute value 1. If 𝑆 is normal and eigenvalues have absolute value 1, 𝑆 is an isometry, 

okay? Both of these are true. So it's sort of a complete characterization, except that, you know, I 

mean you have to go to a complex vector space, you have to allow for complex eigenspaces. If 

you don't want that, then I guess this is not a very complete characterization. If everything has to 

be real, then maybe you need a little bit more of a thing, right? So, because this orthonormal 

basis may have complex entries, right?  
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So if you look at the example [𝑐𝑜𝑠(𝜃)  − 𝑠𝑖𝑛(𝜃);  𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)], if you want an orthonormal 

basis for it, you have to go to complex, right? Otherwise you're not going to get that basis of 

eigenvectors. For it, you would go to complex, otherwise you're not going to get it, okay? So if 

you're okay with going to complex, this works out. If you insist on being real, maybe you need 

something more. But, you know, this is quite nice, you know? This is very nice and complex is 

not too bad in most cases, okay? So this is an isometry. A proof is very easy, you know? I mean, 

forward result: if 𝑆 is an isometry, we know 𝑆 is normal and if you have |𝜆𝑖| = 1, we already 

proved it's an isometry, right? So we did a quick proof for this result when it's a normal operator. 

Symmetry. For the converse. If 𝑆 is an… Okay, so I'm sorry, so for the converse, if 𝑆 is normal, 

okay… So I'm sorry about this. I think this is not quite correct. So you should not have this. So I 

think I had the whole thing wrongly written out. I think the proof goes wrong. So this is the 

converse. Sorry about that. This is the converse and this is the forward result, okay? Sorry. So I 

wrote it down wrongly. So, it's okay, I think the proof itself is okay. I have just written down the 



result wrongly, okay? So converse is: if 𝑆 is normal, as in, if there exists an orthonormal basis of 

eigenvectors, if it is normal and absolute value is 1, we have already shown, okay? The converse 

we’ve already shown. The forward result is: if 𝑆 is an isometry, then of course 𝑆 is normal and it 

has an orthonormal eigenvector basis, right? So this much is true. So the only thing we have to 

show is: if 𝑆 is an isometry, its eigenvalues will have absolute value 1, okay?  
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So that is the proof we have not done so far, right? If 𝑆 is an isometry, then 𝑆 is normal. I know 

that. So there will be an orthonormal basis of eigenvectors, okay? That much we have seen. But 

what about its eigenvalues? Why should its eigen, why should its eigenvalue be 1, okay? So 

maybe we already showed it. But anyway we can prove it in one more way, just for us to be 

happy. But this will mean I'll have to rewrite this, okay? So let me just cut it out, okay? So first 

was the converse, this is the one, you can prove it in yet another way that absolute value of 

eigenvalue should be 1. So supposing you say 𝑆𝑒𝑖 is 𝜆𝑖𝑒𝑖. So these are the eigenvalues. You can 

take norms. If you take norms on both sides, on the right hand side you will get 𝜆𝑖𝑒𝑖, the norm of 

that is just 𝜆, okay? Not 𝜆, 𝜆𝑖. Today is the day of mistakes. Quite a few mistakes are there, 

okay? So this is 𝜆𝑖, okay? |𝜆𝑖𝑒𝑖|. And of course the left hand side is ||𝑆𝑒𝑖||. Now 𝑆 is an 

isometry, right? How do I go from here to there? 𝑆 is an isometry. If 𝑆 is an isometry and it has 

an eigenvector with eigenvalue 𝜆, then ||𝑆𝑒𝑖|| is the same as ||𝑒𝑖|| and that is one, okay? So you 

will get |𝜆𝑖| = 1, okay? So it’s very easy to show that, you know, eigenvalues should have 

absolute value 1. In fact, I mean, you can sort of go back to our example and convince yourself 



that they should have absolute value 1. Otherwise they won't be an isometry, right? It's the same 

thing that we are doing here, okay?  

 

So this sort of concludes what I wanted to say about isometries. Isometries are very interesting 

operators. Basically, if you think in terms of matrices, rows and columns are orthonormal, right? 

That's a very easy characterization. And that's a complete characterization for isometries. You 

can think in terms of so many other terms. It should be normal with eigenvalues having absolute 

value 1 and all that. And another interesting thing is just because it's an isometry, it also 

preserves inner products, okay? So that also is very useful in practice. The fact that it's an 

operator that preserves inner product. So people sort of say that if you have a vector space and if 

you use an isometry on it, you're not really changing anything, right? So nothing is being 

changed. Inner products are preserved, norms are preserved. So the relationships between vectors 

are preserved. Everything is sort of exactly the same. But if you multiply with even an invertible 

operator which is not an isometry, then you know, then you're changing the relationships 

between vectors, you're changing the inner product, okay? So isometries are very powerful and 

they have quite a few applications, okay? So that's the end of this lecture. Thank you very much. 


