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Hello and welcome to this lecture. We're going to talk about positive operators in this lecture. So 

there is a way in which you can think of classification of these operators. So if you remember, 

from the very first day, we have been looking at operators 𝑇 which take you from the vector 

space to itself. Linear operators, how to classify them, how to study them, what are the various 

types, what are their properties, etc. One simple analogy is, you can think of, this is an analogy… 

Again, remember, what is an analogy? It is just something which is similar to, there is no hard 

proof or anything, is to think of operators also like, you know, you classify them in a similar 

manner as complex numbers are classified, right? So you think of complex numbers in the 

complex plane. Some of the complex numbers are real, right? So they are equal to their 

conjugate, okay? So what is the analogous picture in the operators? Operators have adjoints, and 

if the operator is equal to its adjoint, then you have these self-adjoint operators, which are like 

your, you know, real numbers in some sense, okay? And then some of the real numbers are 

positive, some of them are negative.  
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So we are now looking at positive operators. And then there are other things in the complex 

plane and we will slowly see that there is an analogy between how we classify and study 

operators and how we classify when we think of complex numbers, okay? So positive operators 

will have a lot of properties of the positive real numbers which when seen as a subset of the 

complex plane, okay? So let’s get started.  

 

So here is a quick recap. We are looking at vector spaces over the real or complex field. We see 

that, you know, operators play an important role and there is a matrix representation, there is the 

fundamental theorem of algebra which talks about null space, range space and all that and the 

four fundamental spaces associated with the matrix. And eigenvectors, eigenvalues lead to a 

huge simplification in understanding how operators work. And upper triangularization is always 

possible. Some operators are diagonal, okay? And then there is this whole inner product and 

orthogonality which makes study so much more easier, which orthonormal basis, you see upper 

triangularization is possible. Then there is this idea of projection which solves a very nice 

optimization problem. And then we studied adjoint, what adjoint brings, this other picture into 

mind with respect to how inner product plays with a linear operator and in particular self-adjoint 

operators, normal operators. All of these are diagonalizable with respect to an orthonormal basis, 

right? Orthonormal basis of eigenvectors exist. We saw this complex spectral theorem, real 

spectral theorem. And now we are studying another type of operators called positive operators, 

which have huge applications once again. Particularly in the area of optimization, positive 

operators are used a lot. Maybe in a later lecture, we will look at applications separately.  
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Okay. So here is the definition. It is actually a very simple and interesting definition. We have an 

inner product space and an operator 𝑇. It says operators 𝑇, it should be operator 𝑇. An operator 𝑇 

is said to be positive if 𝑇 is self-adjoint. So first of all we will only associate, so even in the 

complex numbers, only real numbers can be positive or negative, right? Usually for complex 

numbers, we don't associate a sign, right? So there's no sign for complex numbers, only real 

numbers have either positive or negative. So only if 𝑇 is self-adjoint we think about positive, 

negative. Otherwise we do not associate this notion of positive with it. And what is the condition 

for positivity? This is the condition, okay? The inner product < 𝑇𝑣, 𝑣 > should be non-negative, 

okay? Should be greater than or equal to zero, okay? So for all 𝑣 this should happen, okay? So 

your operator 𝑇 is self-adjoint. It takes 𝑣 to 𝑇𝑣, but < 𝑇𝑣, 𝑣 > needs to be non-negative for that 

operator to be called positive, okay?  

 

So immediately at the outset, I want to point out there are some terminology differences here. 

Some people would call it non-negative, right? Or positive semi-definite instead of positive. So 

all that is fine. In our course, we will just consider this as the definition for positive, okay? So be 

aware that there are some minor modifications in these definitions, whether or not you put equal 

to or not here, okay? Okay. So why is this self-adjoint a big deal? Because, you know, so we 

have this condition needed for being positive, right? See if < 𝑇𝑣, 𝑣 > is not real itself, then 

clearly it cannot be positive. I mean, that doesn't make sense, right? So < 𝑇𝑣, 𝑣 > should be real 

for all 𝑣, okay? Now that condition, if the field is complex, we've seen a result before, that 

immediately implies T is self-adjoint, right? So we have seen this definition of how if < 𝑇𝑣, 𝑣 > 

is real, you know, < 𝑣, 𝑇∗𝑣 >̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is actually < 𝑇∗𝑣, 𝑣 >. So if you subtract those two, you get  

< (𝑇 −  𝑇∗)𝑣, 𝑣 >. So if, and that goes real, so if it is real, then, you know, it has to be self 

adjoint. So we saw that very interesting little result there. So if 𝔽 is ℂ, that is true. On the other 

hand, if 𝔽 is ℝ, it looks like self adjoint is not really needed, but we have imposed that condition 

here, right? So it seems like the self-adjoint is an additional condition when 𝔽 is ℝ because when 

𝔽 is ℝ, < 𝑇𝑣, 𝑣 > is always real, so there is no problem with < 𝑇𝑣, 𝑣 > being real. But later on I 

will point out some particular case, particular argument to show that this condition that 𝑇 be self-

adjoint does not really limit you, okay? So this necessary condition is not a big deal. So for now 

just accept it, you'll see later on why even if when 𝔽 is ℝ, the self adjoint is not a bad 

assumption, okay? So you'll see it's an okay assumption to make. Okay?  

 

So this is the definition. So the definition is important to picture in your mind, so I am going to 

say this < 𝑇𝑣, 𝑣 > ≥ 0. And then I will say the operator 𝑇 is self-adjoint. So some people like to 

say it's a property of this type of inner products. It’s not really a property of the operator, but 

anyway… So it's, we will call it like that, okay? Okay. So what happens in terms of matrices? It 

is always good to just immediately think of matrices. Sometimes it gives you a clear picture of 

what is going on. If you think of an 𝑛 × 𝑛 matrix representing a transform 𝑇. 𝐴 is positive if 𝐴 =

𝐴𝐻. So this notation, hermitian, I will use to denote conjugate transpose. It's just a simple 

notation. Your book does not use it, but I'm going to use it to just cut short some of these 



notation, okay? So conjugate transpose I will call it as 𝐴𝐻, 𝐴 hermitian, okay? So if 𝐴 = 𝐴𝐻 and 

𝑥𝐻𝐴𝑥 ≥ 0  ∀𝑥 ∈ 𝔽𝑛, okay? So this is the definition for, in terms of matrices. The same thing I 

have just written it down in terms of, you know, 𝑥𝐻𝐴𝑥 to point out that, you know, it is the inner 

product like this. This is a product of this form. So this 𝑥𝐻𝐴𝑥 is something very interesting. It’s, 

in fact it is called the quadratic form. Later on we will see some applications and all that. But 

that's what needs to be non-negative. So it's not like the operator itself is positive or an operator 

takes positive… Or what is the meaning of saying a matrix is positive, right? So that's not what 

we are worried about. We are thinking of this positive definite or positive in some sense, we 

associate with this quadratic form 𝑥𝐻𝐴𝑥 should be non-negative for all 𝑥, okay?  
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So why am I calling it quadratic form? We will see later on, but for now just accept that 

terminology, okay? So this is… And this is written as 𝐴… This, so it's not the usual positive, it's 

this sort of curly positive greater than or equal to, okay? So this is how one writes these things, 

okay? So let's see a few examples, okay? A few examples will clarify what is going on. 

Supposing I have a matrix [𝜆1 0;  0 𝜆2] and say 𝜆1, 𝜆2 ∈ ℝ, okay? They have to be real because I 

am saying is greater than equal to 0. So if you look at 𝑥𝐻𝐴𝑥, you will see that it is, you know, 

[𝜆1𝑥1; 𝜆2𝑥2], that is 𝐴𝑥, right? 𝐴𝑥 is that, okay? 𝑥𝐻 is [𝑥1̅̅̅  𝑥2̅̅ ̅]. You multiply this out, you get 

𝜆1|𝑥1|2 + 𝜆2|𝑥2|2, okay? So when will a matrix like this, a diagonal matrix like this be positive? 

If the 𝜆1 and 𝜆2 are real and they are positive, okay? Non-negative, okay? So that case, 𝐴 

becomes a positive. represents a positive operator, okay? So this is a simple, nice enough 

example. But look at this guy, you know? So you have [2 𝑖;  −𝑖 2], okay? This is 𝐴 and it turns 



out this 𝐴 is actually positive, okay? So it's an exercise, you can see that, you know, 𝑥𝐻𝐴𝑥 has, 

you know, some crazy condition like this, you know, expansion like this and it, I mean I will 

leave it as an exercise to you. You can show it using some arguments that this is always positive 

whatever value of 𝑥1 and 𝑥2 you take. It's also real, I mean, real maybe you can quickly see, you 

know? There is this conjugation going on here. But positive needs a little bit of work. But it can 

be done, okay? So at this point I'll leave it as an exercise. Later we'll see a general result which 

will easily argue why, from which you can easily argue that this is positive. But for now there are 

very different looking matrices. Even with complex entries the matrix can be positive. So it's not 

obvious what is happening. You can see clearly that this is self-adjoint, right? So you can see 

that, you know, the conjugate transpose is itself, okay… So whenever we think of matrices 

representing operators, we are thinking standard basis, orthonormal basis. So conjugate transpose 

represents the conjugate of the operator, the adjoint of the operator and all, okay? So all that is 

true, okay? So two examples we saw. We will see more examples of positive operators. There 

are very very many interesting examples as well, okay?  

 

So here is an example of an operator which is not positive, okay? So you should also see a 

simple example. So here is a simple example. So if you put 1, -1, I am going to get |𝑥1|2  −

 |𝑥2|2. So clearly it could be positive for some 𝑥, negative for some 𝑥, 0 for some 𝑥. So it's not 

really a positive operator. So you can have operators which are neither positive nor negative or 

anything like that, right? So this quadratic form need not have the same sign always, okay? So it 

can go all over the place. So there are operators like this. It's good to see an example clearly of 

what is not positive also. So hopefully this gives you an idea of how positive operators look like 

and, you know, what we can say about them. So later on we'll see a very nice characterization of 

positive operators. For now it seems like there is a variety of them, lots of different types of 

operators and they may be positive, non-positive. First of all, this last 𝐴 is also self-adjoint, 

right? So it is symmetric but it's not positive, okay? So that's some examples for you.  

 

Then let's talk about the self-adjoint property, right? For real spaces, if you want to think of 

positive, you know, quadratic forms, do you really need this self-adjoint? So let us take an 

example of an 𝐴 which is not symmetric. Here is an example. [1 1; −1 1]. So it is not 

symmetric. But the quadratic form 𝑥𝑇𝐴𝑥, you can do the multiplication, I am not showing you 

the multiplication. It’s quite quick here, it will be (𝑥1
2  +  𝑥2

2) and that is clearly non-negative, 

okay? So maybe it looks like, you know, if you do not think about it for a little while, it seems 

like maybe you are losing something by saying 𝐴 needs to be symmetric, right? So previously we 

took up only symmetric 𝐴 and we said for non-symmetric 𝐴 we won't even consider positive. But 

here is an example of a non-symmetric 𝐴 which somehow has a positive quadratic form, right? 

The quadratic 𝑥𝑇𝐴𝑥 ends up being non-negative. So in real spaces, some interesting things like 

this may happen. But notice this condition, okay? This is what's very interesting. If you look at 

𝑥𝑇𝐴𝑥, it is actually equal to 𝑥𝑇 (
𝐴 + 𝐴𝑇

2
) 𝑥, okay?  
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So how do I prove this? This is actually not very hard. So if you do 𝑥𝑇𝐴𝑥, it is actually a scalar, 

right? So 𝑥𝑇𝐴𝑥 is the same as (𝑥𝑇𝐴𝑥)𝑇, because it is a scalar, right? It’s 1 × 1. So it's equal to its 

transpose and that is the same as 𝑥𝑇𝐴𝑇𝑥, okay? So how do you do it when you have a product of 

three matrices and you do transpose? You have to do the inverse, I mean the opposite direction, 

right? In reverse you have to come. So first 𝑥 gets transposed, then 𝐴 gets transposed then 𝑥𝑇 

gets transposed. You get this. So these two are equal, okay? So clearly 𝑥𝑇𝐴𝑥 equals (𝑥𝑇𝐴𝑥 +

 𝑥𝑇𝐴𝑥)/2 which is equal to (𝑥𝑇𝐴𝑥 +  𝑥𝑇 … ), one of these things I will change to the transpose, 

okay? So that becomes the same as 𝑥𝑇 (𝐴 + 𝐴𝑇)

2
𝑥, okay? So now what is so nice about this guy? 

(𝐴 + 𝐴𝑇)

2
, this is symmetric, okay? So you can see that here, right? So what is 

𝐴 + 𝐴𝑇

2
 here? This 

would just be [1 0;  0 1], okay? So the quadratic form that you get by using 𝐴 and the quadratic 

form that you get by getting, doing, using (𝐴 +  𝐴𝑇)/2 are exactly identical for all 𝑥, okay? So if 

you are worried only about quadratic forms, which you should be, right? Really, I mean, when 

you think of positive, only the quadratic form matters, the actual 𝐴 inside does not matter, it is 

enough to restrict to symmetric forms, right? So it is enough to not worry about general 𝐴 and 

only worry about symmetric 𝐴 and then you would get, you know, positive operators, okay? So 

this is not a very big, bad assumption that we are making, this additional self-adjoint operators 

and only classifying them as positive or negative. It's not a big deal. In the complex case, anyway 

it's going to be self-adjoint. Once it's real, in the real case, even if you have something which is 

positive but not symmetric, you might as well move to the symmetry question and get the same 

quadratic form, okay? So this is something good to know.  



 

Okay. Now here is another very interesting operator which we have studied very well, this 

orthogonal projection. And it turns out any orthogonal projection operator is positive, okay? So 

that’s interesting, right? So we do not think of positive operators or even self adjoint operators 

when we think of projection. So now I am saying 𝑃𝑈 for any orthogonal projection is positive. 

Which means what? It has to be self-adjoint. And then the quadratic form associated with it 

should be non-negative, okay? Any subspace that you project on to, orthogonal case, it is going 

to be positive, okay? So that's a, that's a very interesting result. And one can prove it using just 

the definition. It is not very hard. So I am going to write down the proof for this separately and 

later we will classify more things, okay?  

 

Okay. So here is the proof. So what is the orthogonal projection? Supposing I say the orthogonal 

projection of 𝑣 is 𝑢. Then I know 𝑣 can be written as 𝑢 +  𝑤, where 𝑢 ∈ 𝑈 and 𝑤 ∈ 𝑈⊥, right? 

So this is the definition of orthogonal projection, isn't it? So now notice what happens when I 

look at < 𝑣, 𝑢 >, okay? What is < 𝑣, 𝑢 >? That is < 𝑣, 𝑃𝑈(𝑣) >, right? < 𝑣, 𝑃𝑈(𝑣) >, isn't it? 

That’s what I am trying to find here. So < 𝑣, 𝑢 >, 𝑣 is 𝑢 + 𝑤, so it’s < 𝑢, 𝑢 >  + < 𝑤, 𝑢 >. Now 

what is < 𝑤, 𝑢 >? Because 𝑤 ∈ 𝑈⊥, 𝑢 ∈ 𝑈, so < 𝑤, 𝑢 > goes away, right? So notice, you get 

just < 𝑢, 𝑢 >. So this little quadratic form inner product < 𝑣, 𝑃𝑈(𝑣) > is actually the same as <

𝑃𝑈(𝑣), 𝑃𝑈(𝑣) >, so it is non-negative. All right? So this is non-negative, I have shown that, 

okay? So this has got to be greater than or equal to 0. So you have this interesting little result, 

okay?  
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So that seems fine. But is 𝑃𝑈 self adjoint? Okay? So that’s also something worth checking, right? 

For the real case and all that it just clearly completes the picture, okay? So it turns out that's also 

true. You can show 𝑃𝑈 is self adjoint. For any projection operator, is self adjoint. I have written 

down a proof argument here, you can think about how that works out. It’s a bit of a, sometimes it 

is a bit confusing, but you can see. Finally I am able to show for any (𝑥, 𝑦), < 𝑃𝑈(𝑥), 𝑦 > is the 

same as < 𝑥, 𝑃𝑈(𝑦) >, okay? So that means 𝑃𝑈 its own adjoint, okay? 𝑃𝑈 becomes its own 

adjoint and it’s a, projection is a self adjoint operator, and it is also a positive operator, okay? So 

go through this proof and you can see the proof uses orthogonality in a very fundamental way, 

right? So this is the definition of orthogonality, isn't it? So if 𝑃𝑈 is a projector, any (𝑦 − 𝑃𝑈(𝑦)) 

is going to be orthogonal to any 𝑃𝑈(𝑥). So 0 is the same as, you just unravel this, you get this <

𝑃𝑈(𝑥), 𝑃𝑈(𝑦) > here. And the < 𝑃𝑈(𝑥), 𝑃𝑈(𝑦) > is common whether you do (𝑦 − 𝑃𝑈(𝑦)) or 

(𝑥 −  𝑃𝑈(𝑥)). So this guy has to be the same as well, okay? So it’s a very interesting operator, 

right? So maybe you never thought of projection in such a, in such great detail. Look at what all 

it does for you. It does orthogonal projection, which finds the closest possible vector. But, you 

know, the way you write it, you see that you're looking at the orthogonal, orthonormal basis in 𝑈 

and simply taking dot product of that with 𝑣 to find the projection, isn't it? So that's like a self-

adjoint operator working on it. And then it's also positive, okay? So think about why all that is 

true. It's very interesting. We can maybe, maybe I'll give you more ways to think about it later 

on. So this is a very interesting result as to why self-adjoint, I mean why projections end up 

being positive, okay? So that's something to remember. In case you are worried about examples, 

if you want to come up with examples for, you know, positive operators, projections are your 

simplest and easiest examples you can think of.  

 

Okay. The next notion is a square root, right? So one of the nice things about, nice or whatever 

things about positive numbers is: you can take square root, right? So you can take square root. So 

is there something like that for positive operators, right? So that's a natural question that people 

might ask. So here is a definition for square root of an operator, okay? The first is the definition. 

𝑅 is said to be a square root of 𝑇 if 𝑇 = 𝑅2, okay? So if you apply 𝑅 twice, you get a square root. 

Now it turns out, I mean you might think of square roots with operators, now you can have all 

types of square roots. In particular we will say a square root is positive if it is positive. 𝑅 is a 

square root of 𝑇 and if it is positive, then 𝑇 has a positive square root, otherwise 𝑇 may have 

square roots which are not positive. So let me give you examples, you know, square roots for 

operators is a bit tricky, you can have so many square roots and all sorts of crazy things can 

happen with square roots and operators, okay? So here is the first example. 𝐴 is some operator 

like this, matrix representing an operator like this. Look at 𝐵. 𝐵 is like this and 𝐵2 is 𝐴, so 𝐵 

becomes a square root of 𝐴, okay? 𝐵 becomes a square root and clearly 𝐵 is not positive or 

anything, right? It's not even self-adjoint. So we don't bother about positive and all here. So you 

can have square roots which are not positive. Here's another example, very interesting example 

by the way. So you have this [0 0; 𝛼 1] and if you do 𝑃2, you get 𝑃, okay? So 𝑃 is its own square 

root. Anything which does 𝑃2  =  𝑃 you can think of it as a projection, but it turns out in this 



case if 𝛼 is not 0, this is not an orthogonal projection, okay? So it is a different type of 

projection. So that's an interesting little aside and exercise. But still, you know, anything like this 

for any alpha is a square root of itself, okay? So it doesn't really change. 
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But here is a very, much more typical example. So here is 𝐴 which is 4, 9 on the diagonal and 𝐵 

is 2, 3 on the diagonal. And it's a positive square root. So in this lecture at least, this is a good 

example for us. So here is a positive matrix, positive operator which has a positive square root. 

So that's nice. So in the previous two cases, we did not have a positive square root, particularly 

when alpha is not zero, right? So clearly this is not positive, no? You can easily come up with 

other examples. So here is, I mean, hopefully these examples give you a picture of, you know… 

There are various types of square roots with respect to operators. In fact you can have multiple 

numbers of square roots and all that so all sorts of interesting properties are possible with respect 

to, you know, operator square roots. But it looks like there are also good cases. As in, you can 

have a positive square root sometimes when you have a positive operator and it seems to work 

out in some sense, okay?  

 

All right. So this is a whole bunch of definitions we have done. I think this gives us all the 

ingredients that we need to try and characterize positive operators, okay? So I’ll give you one 

main theorem or result which provides all the possible characterizations for positive operators 

and we'll do a quick proof and you will also see how it is very interesting, okay? Okay. So before 

we go there, just one more idea, okay? One more type of operator we have studied before which 

ends up being positive which we may not have thought of as positive, but it ends up being 



positive, is this operator-adjoint product, okay? So I think this notation came out a bit badly, so 

hopefully you can see what I mean here, okay? So it's 𝑇∗... 𝑇𝑇∗ and 𝑇∗𝑇, okay? This product of 

operator and its adjoint both ways, right? So these are also operators. For any 𝑇 that you take 

from 𝑉 to 𝑊, 𝑉 and 𝑊 can be different here, and then 𝑇∗ you can take from 𝑊 to 𝑉, you can 

define a 𝑇𝑇∗ which will go from 𝑊 to 𝑊 and 𝑇∗𝑇 which will go from 𝑉 to 𝑉. Both of these are 

in fact positive operators, any product of operator-adjoint is positive, okay? So that is a very nice 

result. And the proof is actually very, very clear. 𝑇∗𝑇 and 𝑇𝑇∗ are clearly self-adjoint, there is no 

problem here. And to show that they are positive, you just have to look at the product here. Push 

this 𝑇∗ to this side, you get ||𝑇𝑣||. Push this 𝑇 to this side you get ||𝑇∗ 𝑣||^2. So both of these 

are clearly positive operators. So we see projection is positive. We see that this operator-adjoint 

product is positive. All sorts of interesting properties are there for positive operators. Is there a 

very clean nice characterization?  
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It turns out there is. And here is the characterization, okay? So this uses all the ideas that we 

collected so far, various types of definitions, and uses it to completely characterize positive 

operators. What operators are positive? Again we will present this result in a very familiar form, 

this following are equivalent form, okay? So this is a constant form in which a lot of results will 

come. When I say equivalent and list a bunch of conditions, it means any one condition implies 

all the other conditions, right? So that's what it means. So for instance if 𝑇 has a positive square 

root, then 𝑇 itself is positive. Then 𝑇 is self-adjoint with non-negative eigenvalues. Then there is 

an operator 𝑅 such that 𝑇 = 𝑅𝑅∗. So all of this is true. Any one thing is true implies everything 

else is true, okay?  



 

So how do you prove this following are equivalent? You just go through all the results in some 

order and then ensure that everything implies everything else, you are done, okay? So what we 

will prove is: we will prove first 1 implies 2, okay? This is not very hard. So if, first of all, if 𝑇 is 

positive, 𝑇 is self-adjoint. That is just by definition. We are taking the definition like that, there is 

no problem there. How do you show the eigenvalues are non-negative? Here is this simple little 

argument. If you have an eigenvalue 𝜆 with eigenvector 𝑣, then you look at this product  

< 𝑇𝑣, 𝑣 >, okay? This quadratic form inner product, we know that this is greater than or equal to 

zero. But now what is 𝑇𝑣? 𝑇𝑣 = 𝜆𝑣 and 𝜆 will come out. So you get this nice result that  

𝜆 < 𝑣, 𝑣 >, < 𝑣, 𝑣 > is positive, equals something that is positive, okay? So 𝜆 itself has to be 

positive, okay? So it's a very simple argument to show that eigenvalue of a positive operator has 

to be positive, it cannot be negative, okay? Well, greater than or equal to zero, but, you know, 

that's what it is. Non-negative, okay? So we have shown 1 implies 2 and we’ll also show 2 

implies 3, 4, 5, okay? Right?  
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What is 2? So once you have a self-adjoint operator with non-negative eigenvalues, it implies 

that 𝑇 has a positive square root, 𝑇 has a self-adjoint square root and T has a, there is an operator 

𝑅 such that 𝑇 = 𝑅𝑅∗. All these three are implied by 𝑇 being self-adjoint with non-negative 

eigenvalues, okay? And it comes from the spectral theorem, okay? So you see the power of the 

spectral theorem here. Once you have self-adjoint with certain types of eigenvalues, I can fully 

characterize what 𝑇 is. Once you characterize 𝑇, you see square roots etc. etc., all of these are 

true, okay? So how do you do it? Here's the spectral theorem. There is an orthonormal 



eigenvector basis for 𝑇, I will assume some coordinates in some standard basis {𝑒1, … , 𝑒𝑛}. Then 

I know I can write 𝑇𝑒. When I say equal to, I mean, you know, 𝑇 is represented by something 

like this. So maybe I shouldn't say equal to, I should put, okay… So you know what I mean 

when I write that. 𝜆1𝑒1𝑒1
∗̅ . Or even hermitian, I have used the notation, I have not used it here. 

𝑒𝑛
∗̅̅ ̅  and all these 𝜆𝑖 ≥ 0. So that is what is very important here, okay? So once I have all the 𝜆s 

being greater than or equal to zero, I can meaningfully define an operator 𝑅 with square root, 

okay? And positive square root of all the lambdas like this, right? So I can define this 𝑅, okay? Is 

that okay? So clearly you see that 𝑅 is also self-adjoint, okay? And clearly you can see 𝑅 is the 

square root of 𝑇, okay? You just do 𝑅2, every other cross product will vanish because of the 

orthonormality. And the same thing when multiplied will give you root 𝜆1
2 which should be 𝜆1, 

(√𝜆𝑛)
2
 which should be 𝜆𝑛. So these are easy things to verify once you write it in this form, 

okay?  
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So notice the power of this form, isn't it? So the spectral theorem and the form in which you can 

write 𝑇 really gives you a huge benefit, okay? So I have written it in terms of coordinates and all 

that but, you know, there is a way to write it without coordinates. You can use linear functionals 

or something and then write like this. But I am not going into all that trouble, I am writing it like 

this, okay? So you can see that 𝑅 is root of this like this, okay? And you can check that this 𝑅 

satisfies everything that you want. So 𝑇 first of all is self adjoint. 𝑇 has a square root, square root 

is also positive, right? Square root is positive, you can check that, okay? So you need to check 

that 𝑅 is positive, okay? I will leave that as an exercise, okay? So you need to check this out. 



How will you check it? You can take any inner product, right, so you put 𝑥𝐻, 𝑥 on this side, you 

will see, you know, it will just work out perfectly positive, right? Every term this dot product 

will be like a norm square type of thing and you will get, everything will be positive, okay? So 

you can check 𝑅 is positive, I have not written that down here. 𝑅 is positive, you can verify that 

𝑇 is 𝑅2 and verify that 𝑅 is 𝑅∗, okay? So all these things you can verify. So 2 implies 3, 4, 5 

through this clever little device of going to the orthonormal basis and simply taking square root, 

positive square root, okay?  

 

And the fact that 5 implies 1 is sort of obvious. 𝑅 is 𝑅∗. So 𝑇 is equal to 𝑅2, 𝑇 is equal to 𝑅𝑅∗, 

okay? So maybe I should write down this also very clearly. So along with this, you are going to 

check that 𝑅 is positive, okay? And then since 𝑅 is 𝑅∗, 𝑇 = 𝑅2 = 𝑅𝑅∗, right? So all of this is 

satisfied by this. So once you have 𝑇 =  𝑅𝑅∗, so that that gives you 5 also. So how does 5 imply 

1? 𝑅𝑅∗ is an operator-adjoint product, right? Product. Once you have an operator-adjoint 

product, it is clearly positive also, okay? So that implies 𝑇 is positive, okay? So that implies 1 

and you are done, okay? So this is a proof, a complete proof for the characterization. So let me 

take you back to the characterization, okay? 𝑇 is positive means, you know, 𝑇 is self-adjoint with 

non-negative eigenvalues. So once you have self-adjoint and non-negative eigenvalues, you can 

simply take square roots of those eigenvalues over the same orthonormal eigenvector basis and 

that gives you the positive square root, the self-adjoint square root, and the operator 𝑅 such that 

𝑇 is 𝑅𝑅∗, okay? It's very nice. And if you have 𝑇 being 𝑅∗, clearly it's an operator-adjoint 

product, so 𝑇 is also positive. So you go back to 1. So all of that is done, okay? So this 𝑇 being 

𝑅𝑅∗ is a very nice and complete characterization of positive operators, okay? So that is a nice 

result, okay?  

 

Finally, to conclude, I want to talk about this ordering of operators, what are called partial 

ordering, and this is a terminology that is used quite extensively, particularly in the optimization 

area. So I think it is good for you to know that. So what we have called as positive is usually 

called positive semi-definite in the typical optimization terminology, okay? So this quadratic 

form being non-negative is 𝐴 being positive semi-definite, that's the name for that, okay? If you 

say it's strictly greater than 0, people use the terminology positive definite, okay? So for us, 

positive means positive semi-definite, that's how we are doing it. There is a similar definition for 

negative definite and negative semi-definite. So you can see this is just the negation of this, but 

these are important characterizations. So these are just definitions, extensions of what we did 

before, okay? And then you can also do an ordering of 𝐴 and 𝐵, okay? So you say 𝐴 is sort of 

greater than 𝐵 in some sense, you know? This sort of curly greater if 𝐴 − 𝐵 is positive, okay? 

And you can also do other relations of 𝐴 < 𝐵 if 𝐴 −  𝐵 is negative and all that, right? This 

positivity of 𝐴 −  𝐵 gives you a lot of, positive definiteness of 𝐴 −  𝐵 gives you this ordering 

for 𝐴, 𝐵. So this kind of ordering is useful in optimization. Maybe we will see later on some 

applications of this. But for now, just, this is just a definition I am making for you to be familiar 



with some of the optimization notation. So later on, if you do a course in optimization, all these 

things will come and help you then, okay?  
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So why do we say partial ordering? Why is it not a complete, what's the difference between 

complete ordering and partial ordering? If you say a complete order, then any two, any two 

things should be comparable with respect to that order. For instance, if you take real numbers, 

right, this > sign is a complete ordering because any two real numbers are either greater than 

each other or less than each other. So there's no question of not being comparable, okay? But on 

the other hand, if you go to complex numbers, this greater than sign, less than sign applies only 

to the real number subset, it's not like a complete ordering of complex numbers in some sense. 

So there's no ordering as such, okay? So that is there. So likewise, this positivity is only a partial 

ordering of operators, it's not that any two operators have to be either greater than or less than, 

that's not needed, it's only partial for instance because there are matrices that are neither positive 

nor negative. So, for instance, [1 0;  0 − 1], it's neither greater than zero nor less than zero, 

okay? So you, so if your 𝐴 −  𝐵 becomes something like this, [1 0;  0 − 1] then you cannot say 

𝐴 > 𝐵 or 𝐵 > 𝐴, okay? So there can be two matrices which are not even comparable using this 

positive definiteness or negative definiteness ordering, okay? So it may happen. So such kinds of 

things are called partial orderings, okay?  

 

So that hopefully gives you a picture. For our definitions, positive is short for positive definite, 

okay? So that brings us to the end of this lecture. Hopefully this last slide, I mean it is not useful 

in a linear algebra course, but it's an application to optimization and later on you'll see this 



definition come up quite often. Wherever you see, people will use these kind of different 

terminologies. And I'm just making it here so that you're not surprised when you see it, okay? So 

hopefully this gave you an idea of positive operators, their characterization. The most important 

characterization is: a self-adjoint operator with non-negative eigenvalues is positive, okay? And 

you can just take the square root, go to the orthonormal basis and take the square root of the 

eigenvalues, you get the square root of that operator. Non-negative self-adjoint, positive square 

root of the operator. And then that gives you a full nice characterization of what positive 

operators are. And we saw that these very special operators like, you know, operator-adjoint 

product is positive always. Projections are positive always. So positive operators seem to be 

showing up in very many interesting places. And quadratic forms play a very important role in 

the understanding of positive operators as well, okay? So we will see applications of all this in a 

later lecture. Thank you very much. 


