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Real Spectral Theorem 

Welcome to this lecture. We are going to talk about the real spectral theorem. In the previous 

lecture, we saw the complex spectral theorem which was a very simple characterization of what a 

normal matrix is, what a normal operator is going to look like, okay? Any normal operator is 

going to have that form, it is going to be diagonal over an orthonormal basis. So if you want to 

express its matrix for instance, you can write it in terms of that very simple expression, which is 

(𝜆1𝑒1𝑒1
𝑇̅̅ ̅  +  𝜆2𝑒2𝑒2

𝑇̅̅ ̅ … ), okay? So we saw that very easy and simple result. A couple of 

illustrations of that as well. So now when you think of a normal matrix, its eigenvalues could be 

real or complex. And self-adjoint is only a subset of the set of normal matrices. And the matrix, I 

mean it's usually over the complex vector space, right? So there is an interest now to looking at: 

how do you exactly characterize self-adjoint operators, right? So that's one interest. And the 

other interest is: what about real vector spaces? Supposing you have a real matrix, is there 

something you can do within the real field without going to the complex field? So what is the 

kind of result that one can say? And that's sort of like the self-adjoint operator. What is normal in 

the complex vector space is the self-adjoint operator in the real vector space. So that is this 

theorem which we will see in this lecture, okay?  
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A quick recap. I think I mentioned the recap earlier. So let us look at what is it that is different 

between a real and a complex vector space. So in general, most of the properties we looked at in 

this class are going to hold whether the vector space is real, over the real field or the complex 

field, right? So that much is more or less true. You do not have to worry so much about it. But 

there are these small minor differences here and there which makes things different. One of the 

crucial differences is the fundamental theorem of algebra, which is: any polynomial is 

guaranteed to have, a polynomial with complex coefficients is guaranteed to have a complex 

root. You cannot say that about real numbers. If it’s a polynomial with real coefficients, it need 

not have a real root, right? So we know that there are polynomials like that. So that makes some 

changes in, introduces some differences when you talk about eigenvalues and all that. But there 

are also a few other subtle differences. I thought I will make a small list of what is out there. So 

if you… When we studied linear maps, and you know fundamental theorem of linear maps and 

all that, there's absolutely no difference between… Everything held, I mean, every result we 

derived holds. It held for both, you know, whether the vector space was the real field or complex 

field there's no problem. But when we went to fundamental subspaces, some fundamental spaces 

of a matrix and all that, there was this subtle little result how, you know, in a real, for a real 

matrix, the row space became orthogonal to the null space. For the complex, it's not exactly that, 

it's the conjugate row space which becomes orthogonal to the null space, right? So that’s some 

minor differences there. That's primarily because the inner product is different. The inner product 

in real space is just the dot product, inner product in the complex space is the conjugate dot 

product, so which is, which makes a big difference there.  
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And the other clear difference is eigenvalues, right? So you need not have real eigenvalues for a 

real matrix, like, for what, for instance for a complex matrix or even the real matrix, there's 

always a complex eigenvalue. So let me just give a couple, one example to illustrate what 

happens with these eigenvalues and eigenvectors and all that. Particularly, see, all these are 

eigenvalues, what about eigenvectors? Should they be real or complex? What happens? So 

supposing you start with a nxn real matrix. And let's say it has a real eigenvalue lambda. Once 

the eigenvalue becomes lambda, real lambda, then the eigenvector is actually a null space vector 

in (𝐴 − 𝜆𝐼). Now 𝐴 is real, 𝜆 is real, 𝐼 is real. So (𝐴 −  𝜆𝐼) is real. You evaluate null space of 

that, you will only get real vectors, right? So the eigenvectors are real, okay? So when you have 

a real matrix and a real eigenvalue, eigenvectors are also going to be real, there is no problem 

with that, right? So there are maybe other ways to prove these things, but it's clear that that is 

true, right? So that's interesting. Now what… But that need not be true, right, so you can have, 

even, for normal matrices which are not self-adjoint. Like for instance this simple example. 

[0 1; −1 0]. You can have only complex eigenvalues, there is no real eigenvalue for this matrix. 

There are two complex eigenvalues: 𝑖, −𝑖. And when, once the eigenvalue itself goes complex, 

even for a real matrix, the eigenvectors are going to be complex, right? So otherwise it won't 

make sense, right? So you will have eigenvectors being complex. So these are the two types of 

situations you can have typically when you have a real matrix. If it has a real eigenvalue, the 

eigenvector will be real. If it has a complex eigenvalue, then the eigenvector will be complex, 

okay? So this is something to keep in mind when we think of eigenvalues, eigenvectors for real 

versus complex, okay? So this is a simple, simple fact.  

 

Okay. So what about self-adjoint operators? Like I said, I mean a normal operator is very easy to 

characterize. And I was telling you that, you know, self-adjoint operators similarly in the real 

space are very easy to characterize as well. So the crucial result there which we have seen 

already is that: for self-adjoint operators, whether they have complex entries or real entries, once 

they become self-adjoint, the eigenvalues are real, okay? So that makes a significant, that's an 

important stepping stone into looking at, you know, symmetric or self-adjoint operators in vector 

spaces over the real field, okay? So this is a nice guarantee to have. When you have a self-adjoint 

operator, whether it's real or complex, the eigenvalues are real, okay? So in particular, if you are 

going to look at vector space over real and self-adjoint operators, this is very very useful, okay? 

All right. So that is something good to know. So now what happens is, okay, so you have an 

operator 𝑇 which is self-adjoint and then you go to a basis and find a matrix for 𝑇, an 𝑛 × 𝑛 

matrix, okay? So let us say vector space 𝑉 is dimension 𝑛, as usual. 𝐴 is an 𝑛 × 𝑛 matrix. We 

know how to find all the eigenvalues of 𝐴, right? How do we do that? We take |𝐴 −  𝜆𝐼|, it's a 

polynomial in 𝜆, you find the roots, okay? So now because 𝑇 is self-adjoint, because 𝐴 is 

symmetric, this polynomial can only have real roots, it cannot have complex roots, okay? So if it 

has complex roots, then that root will become an eigenvalue and that's wrong, right? It's a self-



adjoint operator, it cannot have a complex eigenvalue, so this clearly tells you that this 

polynomial will have all real roots, okay?  
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Now your book has a different proof for a similar result without using determinants, so 

determinants are not so crucial here. I just put it out here for getting us a simple little argument 

and getting over the proof. Otherwise, if you do not use determinants here, you have to do a long 

argument involving quadratic expressions with operators and all that, which is okay, it is, I will 

leave you to read it in the book. But for our purposes, since we are anyway okay with looking at 

determinants, we are simply going to say this will have all real roots, okay? So that's an easy 

result to see because eigenvalues of 𝑇 are real, okay? Now what about eigenvectors, okay? See, 

so now this… We know already that there is a good start we have made for a self-adjoint 

operator over a real field. All its eigenvalues are going to be real. Now what about eigenvectors? 

For every real eigenvalue, I am guaranteed to have at least one real eigenvector, okay? But what 

about geometric multiplicity? Will algebraic multiplicity be equal to geometric multiplicity or 

can there be cases where you have a self-adjoint operator, a symmetric matrix, but its geometric 

multiplicity is strictly less than the algebraic multiplicity? Then what will happen? It will not be 

diagonalizable, okay? So can you have a self-adjoint operator which is not diagonalizable, okay? 

Even over the real field, okay? So that's an interesting question that one can answer. And all 

these questions are beautifully settled in the real spectral theorem which we will hopefully see in 

the next slide, okay?  

 



So this is the real spectral theorem, okay? So you have a vector space over ℝ, okay? Over the 

real field. And 𝑇 is an operator, okay? The following are equivalent. When you say equivalent, 

again, any one implies the other, they are all equivalent, okay? If 𝑇 is self-adjoint, then there is 

an orthonormal basis of eigenvectors of 𝑇 in 𝑉, in the real vector space, okay? And of course 𝑇 is 

diagonal with respect to this orthonormal basis. And this is implied, I mean this is if and only if, 

okay? If 𝑇 is self-adjoint, then 𝑇 is diagonal with respect to an orthonormal basis. If 𝑇 is 

diagonal with respect to an orthonormal basis, then 𝑇 is self-adjoint. So it's a complete 

characterization of what a self-adjoint operator will be, okay? What a symmetric matrix will be, 

it will be something which is diagonal with respect to an orthonormal basis. Nothing else, okay? 

So this simplifies the description of self-adjoint operators. Not only that, it also tells you that any 

self-adjoint operator is diagonalizable. Its geometric multiplicity of any eigenvalue will be equal 

to the algebraic multiplicity. All of that is guaranteed by this real spectral theorem.  
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So it’s a very powerful result and you can see the analogy between this and the complex spectral 

theorem, right? What is normal operators in vector spaces over complexes is sort of captured, 

that spot is captured by self-adjoint operators in vector spaces over the reals, okay? So it’s a very 

simple and elegant result. It tells you that a symmetric matrix is always diagonalizable. You 

cannot have a symmetric matrix which is not diagonalizable, okay? So that's a nice result to 

have. It's, a couple of points, I mean, a lot of people get confused by this, so I'll re-emphasize 

that it's not necessary that a symmetric matrix should have distinct eigenvalues, right? So we saw 

before, if an operator has distinct eigenvalues, then it is diagonalizable. A symmetric matrix, 

whether it has distinct eigenvalues or not, it's always diagonalizable. So that's the power of this 



result, right? So any symmetric matrix is diagonalizable. Any, you know, self-adjoint operator is 

diagonalizable. So that's the power of this result. So simple examples are there, but anyway, 

that's what I mean. So keep that in mind, okay?  

 

So we will do a quick proof. And proof is very similar to what we did in the normal case. So first 

of all, two and three sort of imply each other. We can forget about them. And three implies one is 

also very easy to show, okay? So let us say if you have 𝑇 being diagonal with respect to an 

orthonormal basis, you will have a diagonal matrix representing 𝑇. Now all the diagonal values 

are the real eigenvalues of 𝑇. So they are all going to be real. So if you take conjugate transpose 

of 𝐷, you will get 𝐷 itself, okay? Which is again real. So 𝑇 becomes self adjoint, okay? So to 

show that 𝑇 is self-adjoint if it has a diagonal matrix with respect to an orthonormal basis is easy, 

okay? So this part is easy, it's very similar to what we did in the normal case, okay? So in this 

case, because 𝐷 is diagonal and real, the conjugate simply becomes equal to itself, okay? So in 

the previous case, the normal case, we only had commuting because it could be complex, right? 

So normal we do not know eigenvalues are real. Here the eigenvalues are real, so it becomes 

equal, okay? When you take conjugate transpose, okay? So that is good.  

 

So a slightly non-trivial result is one implies three, okay? So same thing in the complex spectral 

theorem as well. So here we will follow an approach similar to, I mean sort of similar to what we 

did for the complex spectral theorem. The complex spectral theorem we started with the 

orthonormal basis which gave an upper triangular matrix, right? And then we showed that that is 

diagonal, okay? So here also we'll do something very similar. But instead of just invoking 

Schur’s lemma or Schur’s theorem which we can't because that really works for complex spaces. 

So here we are in real space. So we will just sort of rederive it slowly step-by-step. If you 

remember the proof of Schur’s theorem, the orthonormal basis, you start with one eigenvalue and 

then, you know, start going step-by-step from that. So something like that we will do here, okay?  

 

So you start with one eigenvalue. I know it will be a real eigenvalue for 𝑇 because it’s, 𝑇 is self 

adjoint and it has a real eigenvector. Once you have a real eigenvalue, it will have a real 

eigenvector, it’s easy to see, okay? So we can extend 𝑣 to an orthonormal basis, okay? The 

orthonormal is important. We extend v to an orthonormal basis and all of these are real, right? 

This is over the real field, okay? {𝑣, 𝑢1, 𝑢2, … , 𝑢𝑛−1}. So in this basis, if you find a matrix for 𝑇, 

okay, the first column is going to be 𝜆 followed by all 0s. And the next columns will be various 

things. Now remember, this is an orthonormal basis with respect to which you found a matrix. 

Now this is real, everything is real here. So 𝑇 has, 𝑇 is self adjoint. So 𝐴 has to be equal to 𝐴𝑇, 

okay? So 𝐴 = 𝐴𝑇 then clearly the top row, 𝑎12 to 𝑎1𝑛 have to be all 0, right? So it has to be equal 

to its transpose, it has to be symmetric, so that has to be true. And and then 𝐴1 has to be equal to 

𝐴1
𝑇, right? So this sub-matrix here, the (𝑛 − 1) × (𝑛 − 1) sub-matrix here has to become self-

adjoint or symmetric in some sense, right? So these are the simple facts you get just by going to 

this. So previously we couldn't conclude, you know… So when we did not have an orthonormal 



basis and we did not have a self-adjoint operator, we couldn't conclude these things were 0. We 

had to live with them, you know… I had to define some other operator when I moved to the 

(𝑛 − 1) × (𝑛 − 1). In this case, when I go to (𝑛 − 1) × (𝑛 − 1), I simply get another symmetric 

matrix, okay? So that's a nice thing to have here. So the top row is all zero, okay?  
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So notice how the upper triangular is slowly becoming diagonal, okay? So once I come to 𝐴1, 

you notice, right, this 𝐴1 represents the self adjoint operator from 𝑢1 to 𝑢𝑛−1. So what is this? 

When I say from this, I mean really from span of this to span of this, okay? The span is sort of 

left out there, okay? So you can see that, see, because notice. See, 𝐴1 the top row is all zero, 

right? For 𝐴1. So when you use, when you apply 𝑢1 on it, you are never going to get anything 

from 𝑣, okay? So 𝑣 will not play a role when 𝐴1 alone is operating. So {𝑢1, … , 𝑢𝑛−1} →

|𝑢1, … , 𝑢𝑛−1}, if you look at the span of those two, this 𝐴1 will represent a self-adjoint operator, 

okay? So you have come from dimension 𝑛 to dimension 𝑛 − 1 with some diagonal 𝜆 extension, 

okay? Then you repeat whatever you did with 𝐴 for 𝐴1, okay? So you can even write a program 

for doing this, it is easy to go step-by-step and step. And in every stage you will have an 

orthonormal basis. And 𝐴 will start being diagonal diagonal diagonal, you will get smaller and 

smaller, this 𝐴1 will become 𝐴2 which is (𝑛 − 2) × (𝑛 − 2) then 𝐴3, 𝐴4 etc. And finally you will 

end up with an orthonormal basis with respect to which the operator 𝑇 itself is diagonal, okay? 

And that's the result, okay? So this argument you can make in so many different ways. You can 

make it in a slightly more abstract way with, you know, self… I mean invariant 𝑈 and 𝑈⊥ and all 

that which is what your book does, and some induction sort of argument which can make it a 



little bit more clean. This one maybe is a little bit more dirty, involves matrices and all that but I 

think it gives you the crux of the idea of how this orthonormal basis works. So then look at how 

self-adjoint is so important, otherwise you can't get rid of the upper triangular terms, they go 

away because of the self-adjoint property, okay? So that's the end of this proof.  

 

So this real spectral theorem is very powerful, particularly when you want to look at matrices of 

self-adjoint operators on real spaces or basically symmetric matrices. What happens when you 

have an nxn real symmetric matrix which of course represents a self-adjoint operator, say with 

respect to the standard basis, okay? Any other basis is fine. You can pick the standard basis. We 

know from the real spectral theorem that there is an orthonormal basis {𝑒1, … , 𝑒𝑛}, right, such 

that 𝑒𝑖 is an eigenvector of 𝐴. 𝐴𝑒𝑖 is 𝜆𝑒𝑖. 𝜆𝑖 is real so… I forgot to put the 𝑖 here, 𝜆𝑖𝑒𝑖, okay? And 

𝐴 itself becomes 𝜆1𝑒1𝑒1
𝑇 +  … ). See, because it becomes diagonal, right? 𝐴 becomes diagonal 

with respect to this orthonormal basis. And once it becomes diagonal, you know 𝐴 can be written 

in this form 𝜆1𝑒1𝑒1
𝑇̅̅ ̅  +  … + 𝜆𝑛𝑒𝑛𝑒𝑛

𝑇̅̅ ̅. This is similar to the complex spectral theorem.  
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So we did, so this is a form for any 𝑛 × 𝑛 real symmetric matrix and that really simplifies things 

quite a bit here. You take any orthonormal basis, pick any 𝜆 of your choice, you multiply, you 

know, do a linear combination like this, each one is a rank one matrix. You add up 𝑛 of them, 

you know, multiplied by 𝜆s, whatever they are, zero, non zero… They all have to be real though, 

right? Then you get a symmetric matrix, any symmetric matrix can be decomposed like this. 

Anything you form like this is a symmetric matrix. So that's what is, I mean, it's sort of easy to 



see one way. The other way maybe is a little bit tricky. So that is the symmetric matrix and the 

real spectral theorem here, okay?  

 

You can see an example, this example is from your book. It’s a very clean example. You have a 

matrix here and it has three distinct eigenvalues. It need not be distinct, this is an example of 

three distinct… It could be that, you know, two of the eigenvalues are the same but still they are 

diagonalizable, you will get an orthonormal basis with respect to which 𝐴 is diagonal and you 

can write it like this. I mean, this form is something that I like. You will see it has a powerful 

use, okay? All right. So that is good. That takes care of the example, okay? So that's the real 

spectral theorem. Hopefully you got a feel for how it works, okay? And let's summarize all that 

we have looked at in terms of spectral theorems for normal and adjoint, self-adjoint operators, 

okay? So let, everything starts with sort of an orthonormal basis. So now you could be, you 

know, the vector space could be over complex or real, you know, the normal and self-adjoint 

operators have a special role there. You can start with an orthonormal basis and you can form a 

matrix 𝐴, let’s say, which is 𝜆1𝑒1𝑒1
𝑇̅̅ ̅  +  … in this form, okay? So the 𝑒𝑖 's are, you know, 

expressed in coordinate terms over a standard basis, let's say, and you can form these, some 

linear combination of rank 1 matrices which give you 𝐴, right? So this is a special form. This 

captures normal and self-adjoint operators.  
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And I put a table here to tell you how you can pick 𝑒𝑖, and how you can pick 𝜆𝑖 to get different 

types of matrices, okay? So if you want to think of normal operators in complex vector spaces, 



you can allow 𝑒𝑖 to be complex and you can pick 𝜆𝑖 complex. If you are thinking of self-adjoint 

operators in complex vector spaces, 𝑒𝑖’s can be complex but these 𝜆𝑖 's have to be real, okay? 

You can't take 𝜆𝑖 being complex. 𝜆𝑖 have to be real, that makes it self-adjoint. Now if you're 

thinking of real operator, real self-adjoint operator, symmetric operators in real vector spaces, the 

𝑒𝑖 's are real, 𝜆𝑖’s are real, okay? So this lets you go one way or the other. Both ways this is all 

that you have to worry about when you think of normal and self-adjoint operators in complex 

and real vector spaces. This sort of conveys everything together, okay?  

 

So what are the advantages of a form like this? First thing is: you can do powers of 𝐴, okay? So 

when you do powers of 𝐴, you can see, I mean the, any diagonalization gives you that, but this 

diagonalization is particularly easy to write down, you know? 𝐴𝑘 is (𝜆1)𝑘, everything else 

remains the same, just 𝜆1
𝑘 , … , 𝜆𝑛

𝑘 , okay? So usually what people do is: you would order these 

lambdas by magnitude, you know, biggest one comes first and smaller one comes next, etc. So 

these guys are bigger and all these guys are smaller. Remember, 𝑒𝑖 is orthonormal, right? So I 

have normalized it, so keep that in mind. So as 𝑘 becomes larger and larger, you see that if this 

𝜆1 is the unique maximum, let's say, then 𝐴𝑘 will tend to just a rank 1 matrix with 𝜆1
𝑘𝑒1𝑒1

𝑇̅̅ ̅ being 

the rank 1 matrix, okay? So it's also common to make a rank 𝑟 approximation of 𝐴. Remember, 

if you order it in magnitude like this, and you want a rank 𝑟 approximation, a low rank 

approximation of 𝐴 for whatever reason, you can simply stop with the first 𝑟 terms, isn't it? So 

these kind of ideas have powerful applications in engineering and all that, okay? Quite often 

you'll have, you'll be dealing with a very, very large matrix. And for various reasons, I mean, you 

don't care so much about being precise about every entry in the matrix, you want a sense of what 

it is and for that a low rank approximation might be very, very useful for you. So something like 

this can be done and that's very useful. You can go back and see in the example what happens 

when you make a low rank approximation for a symmetric matrix of this form, okay? So that sort 

of summarizes the spectral theorem.  

 

So this sort of concludes the lectures in the week. And hopefully you get a good summary of 

what normal and self-adjoint operators are, and what the spectral theorems tell you in terms of 

characterizing them. Going forward in the next week, we will start looking at, you know, 

positive operators and isometries. So those are again two different types of operators which sort 

of complement these normal and self-adjoint operators and give you a good handle on how to, 

you know, work with more, larger class of operators in real and complex vector spaces. Thank 

you very much. 


