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So we've seen so far linear combinations and notion of span. The next very, very important notion 

in a vector space is that of a subspace, okay? What is a subspace? Suppose somebody gives you a 

very big vector space and you're a little worried about whether you'll be able to understand 

something so big or not. You can look at portions of it, smaller pieces of it which are already vector 

spaces of their own, okay? So if you have such subspaces, then studying vector spaces becomes 

really, really easy, okay? So that is the idea behind looking at subspaces. Smaller subsets of the 

vector space which are vector spaces by themselves, okay? So that is what this definition means. 

 

A subset of 𝑉, 𝑈, okay, is called a subspace if 𝑈 itself is closed under vector addition and scalar 

multiplication. So if 𝑈 itself is like a vector space or a vector space actually, right? So 𝑈 itself is a 

vector space over 𝔽 and then you say it is a vector subspace, okay? So you might wonder why you 

study subspaces. You'll see later on there are really powerful theorems that are very useful and all 

of them rely on these subspaces, and a lot of ideas surrounding them okay? So subspaces are very, 

very important to understand the vector space, okay? 

 

So I have given here examples for subspaces, okay? Remember - a subspace needs to be a vector 

space by itself. So let's look at ℝ2 and ℝ3 for instance, right? So in ℝ2 and ℝ3, which is, you 

know, the plane and the, just the real plane and the real vector space ℝ3, right? Lines and planes 

through the origin are all subspaces, okay? So let us take a look at how that would be, okay? So if 

you look at ℝ2 which I'll have to once again draw... Let me draw the plane axis. I'll draw the next 

one here, okay? Okay, so this is ℝ2. Any line through the origin, okay? So let us make the origin 

a little big here, okay? So any line through origin is a subspace, okay?  

 

So this naturally begs the question - what about lines that don’t pass through the origin, okay? So 

let us say you take a line like this - this is also a straight line, okay? So very interesting question is 

whether this is a subspace, okay? So this is also a subset right? A line in 2D plane is also a subset 

of the vector space. A question you can ask is - is this a subspace, okay? So it turns out this is not 

a subspace, okay? A very, very easy check for a subspace is - see, a subspace should be a vector 

space by itself, which means what? It should definitely have the zero vector, right? A vector space 

should have the identity element. So if the subspace does not have the origin, there is no chance 

that it can be a subspace, right? If any subset does not have the origin in it, there is no chance that 

it will be a subspace, okay? So that is one very easy way to eliminate lines that don’t pass through 



the origin. They will not be a subspace. You can also check. You can take any line that is not 

passing through the origin, take two points on that line and then add them together. You will get a 

point that's not on the line, it will be outside, okay?  

 

So it's most easy to illustrate with a very simple example. Supposing I take this very simple 

example of a line, you know, that's parallel to the y-axis, right? Okay, so if I take a point here this 

would be, let’s say 1, 2, 3, 4... (4, 0) and then I take another point here. This would be maybe 6... 

I am sorry, this is (4, 1), okay? And this would be (6, 1). If I add these two what happens? (4, 1) 

plus (6, 1) I get (10, 2) okay? Where is that? That is somewhere here. Okay, so this is (10, 2) and 

clearly this is not on the line, right? Okay, so you can clearly see that lines that do not pass through 

the origin will not be subspaces, okay?  
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Same thing is true with ℝ3. You can think of ℝ3 as the three-dimensional space here and then if 

you have planes that go through the origin you have subspaces. But... And lines that go through 

the origin you have subspaces. But if a line does not go through the origin, plane does not go 

through the origin, or any other surface, you know, sphere or cylinder or something else, cone etc. 

they are all not subspaces okay? So you can quickly see why that would be not true, okay?  

 

So that gave you a picture of, you know, visualizing how a subspace would be. And here are a 

couple of more definitions which I like. This is also a way in which people typically describe 

subspaces. Look at this definition, okay? So you can check that this is a subspace. You can take 

two points of the form, you know, (𝑥1, 𝑥1, 𝑦1) and then you add it to, you know... You do linear 



combinations. a times this, b times 𝑥2, 𝑦2... I'm sorry it's (𝑥2, 𝑥2, 𝑦2), you will get, you can check 

that this would be (𝑎𝑥1  +  𝑏𝑥2, 𝑎𝑥1  +  𝑏𝑥2, 𝑦1  + 𝑦2) right? This also belongs to the same space, 

it has that form. So the first x... (𝑥, 𝑥, 𝑦), what does that mean? The first two coordinates are 

identical, the third coordinate can be anything else. That is a subset, that's the way I am defining 

my subset of 𝔽3 and that ends up being a subspace because the linear combination is closed, right? 

It's within that, so it becomes a subspace. You can check that, that's very interesting.  

 

So you can think of what that will be in 𝔽3 right? So if you think of the 𝔽3, three dimensional 

space, what will be (𝑥, 𝑥, 𝑦)? If you think of the 2D plane, right? x-y plane, right? (𝑥, 𝑥) is the line, 

45-degree line, through the origin and then y or the z coordinate can be anything, right? So it's a 

plane like that, okay? It’s a vertical plane and it cuts the x-y plane at the 45-degree line, okay? So 

that’s how you can visualize if you like. Of course, if you have a much larger dimension vector 

space it's difficult to visualize it like this but here you can do that, okay?  
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So look at the next one. The next one is also very interesting. So you have this x, y, z such that x 

+ y + z equals 0 okay? Again if you take two points (𝑥1, 𝑦1, 𝑧1)... So let me write right here. So for 

this one, (𝑥1, 𝑦1, 𝑧1) and (𝑥2, 𝑦2, 𝑧2). Remember 𝑥1 +  𝑦1 +  𝑧1 would have been equal to 0 and 

𝑥2 + 𝑦2 +  𝑧2 is equal to 0, right? So 𝑥1 +  𝑦1 +  𝑧1 = 𝑥2 + 𝑦2 + 𝑧2 = 0, I know that that's true, 

okay? So then what will happen if I do 𝑎𝑥1  +  𝑏𝑥2, right? So you see clearly that 𝑎𝑥1  +  𝑏𝑥2  +

 𝑎𝑦1  +  𝑏𝑦2  +  𝑐𝑧1 + 𝑐𝑧2, this is also zero, okay… So if you have, if you take linear 



combinations (𝑎𝑥1, 𝑎𝑦1, 𝑎𝑧1) plus (𝑏𝑥2, 𝑏𝑦2, 𝑏𝑧2) so that vector also belongs to the same 

subspace, so it becomes a subspace. So you can create subspace using these kind of linear 

relationships between coordinates, right? So that's also possible, something to keep in mind so that 

you can get subspaces in different forms. 
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Now how will (𝑥, 𝑦, 𝑧) such that 𝑥 +  𝑦 +  𝑧 = 0 look on the, you know, the three dimensional 

plane? It should be a plane through the origin, right? So if you think of z equals zero on the x-y 

plane, you have to have x + y equals zero, so that will be the line. So y is minus x, okay? So you 

will have this line like, you know, minus 45 degree line right? So that's the line that will be. And 

then how will you push it to larger and larger z? Think about it, so once you have x and y fixed, 

so you can think of that line, and then as you vary z you will simply get, for a particular z on that 

plane, it has to be x + y equal to that z, right? So it will be a line which will keep changing. x plus 

y equal to minus z. So you will get a different solution sort of a line, and from there you can get a 

plane. That will picture it for you okay? So think about how that would look, it's a bit of an 

interesting thing. So it's this... various ways to do these things it will be, it will not be vertical or 

anything. It will be sort of at one angle... What angle it will be, you can think of all that and imagine 

how the subspace would look. But it will definitely be a plane that passes through the origin, that's 

for sure okay? So think about why that's true, okay?  

 

So in general here's an exercise that I've given you. You can try to prove it, you can show that the 

span is basically the smallest subspace that contains the entire, all the vectors, okay? So if 

somebody gives you a set of vectors and asks you the question - what is the smallest subspace, 



what do I mean by smallest? How do you define size of a subspace? So subspaces, if you say 

smallest, it should be smallest in size in some sense right? So it should be contained… Any other 

subspace that contains this should contain the smallest subspace also, okay? So this is a nice 

exercise to think about. Why should span be the smallest subspace containing the 𝑣𝑖 okay? So 

anyway... So hopefully these examples gave you some idea of what subspaces are. If you have a 

big vector space, subspaces are smaller subsets which have all the properties of the vector space 

itself and you can use it in interesting ways, okay? So that's subspaces for you.  
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So let's move on to the next important idea which is of linear dependence and independence, okay? 

So in any vector space over some scalar field, one can define the notion of a linear dependency 

and linear independency, okay? So all of this starts with the set of vectors, in this case we are going 

to start with 𝑚 vectors 𝑣1, 𝑣2, … , 𝑣𝑚 in this vector space 𝑉. I will say that this is a linearly 

dependent set, {𝑣1, … , 𝑣𝑚} is linearly dependent if there are scalars which can make a linear 

combination of 𝑣1 to 𝑣𝑚 and give you 0, okay? So now I have to be careful here because if all my 

scalars are chosen to be 0, right? If 𝑎𝑖 is 0, every 𝑎𝑖 is 0, then the linear combination is 

automatically 0, okay? So there's nothing great about it. So of course if given any set of vectors I 

can make a linear combination which will give me 0, which is the trivial linear combination where 

all my scalars are 0. Now that is not the notion of linear dependence. In linear dependence at least 

one of these coefficients should be non-zero, okay? You cannot make all of them zero. At least 

one has to be non-zero and still the linear combination should end up being zero. If you have a 

situation like that, then these vectors are supposed to be linearly dependent okay? So that's what I 

meant here in the bullet point right below that linearly...  



 

Okay, so something is wrong here, so let me correct it… It is not linearly independent it is linearly 

dependent, okay? So that should not be there... So vectors are linearly dependent if there is a non-

trivial linear combination that can result in the zero vector, okay? So that way we say vectors are 

linearly dependent.  

The opposite is linearly independent. So what is the opposite? There should be no non-trivial linear 

combination. Or another way to put it is if somebody tells you there are scalars 𝑎𝑖 such that 𝑎1𝑣1  +

 𝑎2𝑣2  + … + 𝑎𝑚𝑏𝑚 is 0 then what should be true? All the 𝑎𝑖 should be 0, okay? So only the 

trivial linear combination results in the zero vector, okay? So this is something that's sort of 

important because, you know, if there is a set of vectors and they are linearly dependent, there is 

something redundant about them, right? So it's almost as if one can be formed through the others, 

right? So if you have a linear combination with a coefficient non-zero you can keep that term alone 

on one side, move everything else to the other side, right? And then you can divide and you get 

one vector in terms of the other vectors, okay? So a linearly dependent set has some redundant 

vectors in some sense, linearly redundant sort of vectors. So maybe you can use that and that's 

something useful. On the other hand linearly independent sets, every vector adds some new 

information in some sense, okay? So this is something to keep in mind when you think of linear 

dependence and linear independence, okay?  
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So here are some examples, okay? So the examples are in ℝ2 and ℝ3 and you can see, you, if... So 

given two vectors how do you find whether they are linearly dependent or not, okay? So that is the 



next question naturally, you know, I mean we start with very simple examples. Before that, what 

about one vector? If somebody gives you one vector how do you find out if they are linearly 

dependent or not? What's the meaning of saying one vector linearly dependent? You know 

sometimes definitions you have to pay attention to these kind of trivial corner cases to make sure 

everything works out. So if you have only one vector, that vector has to be the zero vector. If it is 

the zero vector then it is sort of linearly dependent because you can have non-trivial combinations 

giving you zero. But if it is a non-zero vector then it is linearly independent.  

So one vector is not so interesting, but if you have two vectors you can ask this question - are they 

linearly dependent, are they linearly independent, okay? So that is a very valid question, so here 

are two examples I have given here. In ℝ2 you can see very easily that, without too much thinking 

you can quickly say these are linearly dependent, these are linearly independent, okay? It’s not too 

difficult to guess. Likewise, here you stare at it for a while, you see that this is linearly dependent. 

You stare at this for a while, you know that this is linearly independent, okay? Okay so this is easy 

to see and here is an interesting result, okay which is, I will leave as an exercise. It is not very 

difficult to prove. So two vectors are linearly dependent if and only if one is a multiple of the other, 

okay? So this is an interesting thing to remember - one vector has to be a multiple of the other for 

the two vectors to be linearly dependent, otherwise they are linearly independent, okay?  

So in fact think about other trivial cases. Suppose I give you two vectors and one of them is the 

zero vector, okay? Then they are trivially linearly dependent again, okay? So the zero vector makes 

everything trivial in linear dependence, but assuming non-zero... All these kinds of cases are 

interesting, they have to be multiples of each other, okay? So something to remember. So let me, 

this question, to also remember. So supposing you think of ℝ2, in ℝ2 okay? Supposing I have a 

vector here and a vector here, right? These two are linearly independent, okay? Why? Because one 

is not a multiple of the other. If one were a multiple of the other, what should happen? They should 

lie on the line through the origin, okay?  

So here is an example of linearly dependent vectors. So if I have a vector here and a vector here, 

these are linearly dependent, okay? Why is that? Because there is this line through the origin which 

connects both of them, okay? So that is the idea, so one becomes a multiple of the other, all right? 

So keep that in mind. So in ℝ2 linear dependence can be very easily visualized, okay? If they lie 

on a line through the origin, then they are linearly dependent, otherwise they are not. So in general 

in n-dimensional space also, if you can visualize, if you can draw a line through the origin… 

Linearly dependent vectors, if there are only two of them, then they have to lie on that same line, 

okay? So that’s how it goes.  

All right. So two vectors, quite easy to think of linear dependence. Let us go to the next non-trivial 

case, which is three vectors, right? So from two, proceed to three, okay? So let us go to ℝ2 and 

then ask this question, okay? So the first example, look at the first example. (1, 0), (0, 1) and (3, 

17) okay? Are these linearly dependent? Okay, so you think about them for a while. It's not very 



difficult to see that 3𝑣1  +  17𝑣2 = 𝑣3 okay? So these are linearly dependent, okay? What about 

the next example (1, 2), (2, 5), (3, 17)? So in this case it's not so obvious, right? I mean how do 

you find a linear combination for (3, 17) from (1, 2) and (2, 5)? You have to write down some 

things and think about it for a while. But it turns out they are linearly dependent, okay?  

So in fact look at this exercise. Any three vectors in ℝ2 are linearly dependent, okay? Seems like 

an interesting result, I am leaving it out as an exercise for you. Think about it, see how you can 

imagine, look at different situations and prove it. Any three vectors in ℝ2 will be linearly 

dependent, okay? So we’ll prove it in a different way later on in our class, but for now try and 

prove it for the ℝ2 case. It's an interesting exercise if you can show that, okay? 
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Let's go to ℝ3, the next more interesting case and ask the same question. So 𝑣1, 𝑣2, 𝑣3, (𝑎, 𝑏, 𝑐) 

Suppose I give you an (𝑎, 𝑏, 𝑐) vector, okay? Notice here what will happen. If you look at 𝑣1, 𝑣2 

right? So I can do 𝑎 times... I have to do 𝑎𝑣1 if at all I have to match 𝑣3 as a linear combination, 

right? And then I have to do 𝑏𝑣2 okay? And if this has to be equal to 𝑣3, this is if and only if, 

okay? I will write iff. Iff means if and only if, both ways, 𝑐 equals zero, right? So this variable 𝑐 

is crucial to the story here. If in 𝑣3 the third variable is 0, third coordinate so to speak is 0, then 𝑣3 

becomes a linear combination of 𝑣1 and 𝑣2 so they are linearly dependent, okay? So they are 

dependent if 𝑐 is zero. If 𝑐 is not equal to zero then they are linearly independent, okay? There is 

no way you can make a linear combination of 𝑣1 and 𝑣2 to get 𝑣3 when 𝑐 is not zero. If 𝑐 is not 

zero... Notice the third coordinate in any linear combination of 𝑣1 and 𝑣2 will always be zero, 



okay? It's like you're stuck in the x-y plane, you don't have any z direction, right? So only x-y 

plane, whatever combination you do, you can never go there, okay? That's the idea.  

Look at the next example here, okay? So what do you do here? It seems much more tricky, right? 

(1, 2, 5), (3, 6, 7), (𝑎, 𝑏, 𝑐). Can you make a linear combination? Who knows, right? So you have 

to write it down and think about it. Later on we will see some general methods for how to approach 

these problems, how to do them very easily. For now I will let you think about it. If you can, come 

up with some clever ideas for how to find such answers - are these linearly independent or 

dependent. I am leaving it once again as an exercise for you, okay? Think about it.  

So in general we saw quite a few examples in the previous two slides for simple cases, small cases. 

How to establish linear dependence, independence. It seemed like you have to do some work, you 

have to think about it a little bit. Now push yourself to this large data regime, right? Where you 

have thousand length vectors, hundreds of them, given to you. If somebody asks you - are these 

linearly independent? How would you go about doing it, okay? So we want a very efficient, simple 

solution. It turns out there are solutions based on ideas called Gaussian Elimination, okay?  
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But before that, let me just give you a special case. So here is a special case, right? If each of these 

hundred vectors 𝑣𝑖, it was 1 in the ith position, okay? 𝑣𝑖 has 1 in the ith position and 0 elsewhere, 

okay? In the first hundred. After hundred I don’t care, okay? So this thousand length vector, the ith 

vector, say the 50th vector, has one in the 50th position, 0 from 1 to 49 and 51 to 100. And then 

after that I don't care. Supposing you had 100 vectors like that, then it's clearly easy to see that 

they have to be linearly independent. Why? So if you make a linear combination and you have to 



get 0, right? Each one of those coefficients has to be 0 right? Otherwise you will not get this. It is 

easy to see in that case, okay?  

So special cases like that for 𝑣𝑖 are easy to solve. But what about the general case? It turns out you 

can use this notion of Gaussian Elimination to reduce any general case to look like the special case, 

okay? So that was the nice idea. You can manipulate the vectors to make it look like a, like this 

special case, okay? So we will see this later on in some other context. I will give you some simple 

introduction to Gaussian Elimination in another lecture, okay? So it is possible to establish linear 

dependence and independence in a systematic methodical manner. As of now I am leaving you, 

leaving that as a puzzle to you. You can think about it and then when we look at Gaussian 

Elimination you will see how the special case that I am talking about here is all that is important, 

okay?  

So the final piece here is once again a quiz for you, okay? I’ll urge you to answer these questions. 

There are some points etc., they are not for actual grading so please go ahead and submit these 

things. These exact slides will be shared with you, you can take a look at this quiz, answer them. 

It will give me feedback on how well you've done. Try to do it on your own, it will improve your 

learning and other skills, okay? Thank you very much, this is the end of this lecture. We'll meet 

again in the next lecture. 

 


