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Adjoint of an Operator and Operator-Adjoint Product 

Hello and welcome to this lecture on further properties of adjoint and in particular the product of 

the operator and its adjoint. What happens when we do that, what kind of properties can we talk 

about in that context. So this will be a relatively short lecture but it will talk about some things 

which are very important. In the previous lecture we saw how when you compose two operators, 

take the prod… Two linear maps, when you take a product of two linear maps, there is this nice 

little thing you have to look at. Null space of one and the range of the other. And depending on 

how they intersect, some interesting things happen as far as the composition is concerned. The 

composition sometimes sort of retains the properties of one operator and in other cases it doesn't, 

okay? So that's, that was interesting. So one can also look at further properties which come from 

compositions, and that will play a key role later as well. So we will start looking at those kinds of 

things.  
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And another aspect of this lecture is that we will start looking at operators and their adjoints. So 

far we've been looking at linear maps and their adjoints, when the map goes from 𝑉 to 𝑊. Now 



if the map itself is going from 𝑉 to 𝑉, it is an operator, then that adjoint also is an operator and 

something interesting seems to be there between the adjoint and the operator itself, okay? So let's 

start looking at these things more closely, okay?  

A quick recap. All the older things are there. The latest thing we are looking at is adjoint of a 

linear map which sort of gives you the mapping between inner products in some sense, right? So 

what happens when inner products are involved with linear maps? How do you associate, how do 

you relate inner products to linear maps? And there is a very nice relationship. Every map has an 

adjoint so that, you know, < 𝑇𝑣, 𝑤 > when you take inner product, after you've gone to the 

output side is also reflected on the input side through the adjoint, okay? So it's a very nice little 

relationship. And we saw that there are these nice connections between the null space of the map 

and the range space of its adjoint, okay? And all these interesting relationships come in handy 

when we try to derive more advanced results about operators, okay? So let us move on.  

We will start, in this lecture… One of the ideas is trying to relate the eigenvalues of 𝑆𝑇 and 𝑇𝑆 in 

the case where both 𝑆𝑇 and 𝑇𝑆 are operators, okay? So there is a special case. It is sort of a 

special situation. Supposing you have a map 𝑆, linear map 𝑆: 𝑉 → 𝑊. And you have a linear map 

𝑇, some other linear map 𝑇: 𝑊 → 𝑉, okay? So that's the situation where both 𝑆𝑇 and 𝑇𝑆 are well 

defined and they are both operators, okay? So you can see that this is a very interesting situation 

and it can happen quite often. And with an operator and its adjoint, with a linear map and its 

adjoint, this is exactly what happens, isn't it? So let's look at this situation more closely, 

particularly from the view of eigenvalues, okay? Anytime you have an operator, now you can 

start thinking of eigenvalues for it. It simplifies the description of the operator. So otherwise 

when you have a linear map 𝑆: 𝑉 → 𝑊, and 𝑉 and 𝑊 are different, you are not able to associate 

an eigenvalue with it, right? So we sort of went to operators for that. Now it seems like if there is 

a map, some sort of a map from 𝑊 to 𝑉 and maybe it is connected to 𝑆, then for the product of 

those two, both ways we can associate eigenvalues. And is there a connection between these 

eigenvalues and the original linear map? We will explore these things later. But it seems like an 

interesting way to study linear maps in the case where 𝑉 and 𝑊 are different, okay? And still try 

and associate some invariancy for subspaces and etc., okay? So this is something interesting 

from that point of view. So clearly you see that both 𝑆𝑇 and 𝑇𝑆 are well defined. And what about 

eigenvalues for these things?  

So here is a very very interesting and simple to prove result. But very interesting. So if you have 

a non-zero eigenvalue for 𝑆𝑇, it should also be an eigenvalue for 𝑇𝑆, okay? So this is a crucial 

result with these kinds of products. If you look at 𝑆𝑇 and 𝑇𝑆 and both are operators, then they 

share the same set of non-zero eigenvalues. It cannot be that there is a non-zero eigenvalue for 

one but it is not an eigenvalue for the other, okay? It’s a very interesting little result and the proof 

is not very complex as well. So this is interesting. So it seems like when both 𝑆𝑇 and 𝑇𝑆 are 

defined, it's enough if you worry about the eigenvalues of one of those, the other is the same, 

right? So proof is actually quite simple. So supposing you take an eigenvalue 𝜆, there will be an 



eigenvector 𝑣 which is non-zero, right? So 𝑣 is also non-zero. I think I should maybe write that 

down somewhere, okay. So you have this eigenvector 𝑣 which satisfies this property. So this is 

what makes 𝜆 an eigenvalue for 𝑆𝑇, isn't it? 𝑆𝑇𝑣 should be equal to 𝜆𝑣 and 𝜆 ≠ 0, okay? So if 

𝜆 ≠ 0, clearly this 𝑇𝑣 will also be not equal to 0, right? If 𝑇𝑣 = 0, then the left hand side 

becomes 0. Clearly right hand side is not 0. So this 𝑇𝑣 is also not 0. This 𝑇𝑣 not being 0 will be 

crucial, okay? It will be crucial in the next thing. So here is what I'm going to do. I'm going to 

look at 𝜆𝑇𝑣, okay? Notice this little bit of trickery here. So 𝜆𝑇𝑣 is the same as 𝑇(𝜆𝑣). And what 

is 𝜆𝑣? The same as 𝑆𝑇𝑣, okay? And what is 𝑇𝑆𝑇𝑣? There is commutativity for me for operators. 

So you can do 𝑇𝑆 first and then 𝑇𝑣, okay? Linear maps when you multiply, they compose, they 

commute like this, this is the associativity property of this thing. So it is okay. So 𝑇𝑆 you can do 

first, 𝑇𝑣.  
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And notice this equation. This is an interesting little equation. It says, right, you started with this 

guy, right, 𝑣 was an eigenvector for 𝑆𝑇 with eigenvalue 𝜆. Now you see 𝑇𝑣, right, 𝑇𝑣 is an 

eigenvector for 𝑇𝑆 with eigenvalue 𝜆, okay? So 𝑇𝑣 is such that 𝑇𝑆 times 𝑇𝑣 equals 𝜆𝑇𝑣, the 

same 𝜆, and 𝑇𝑣 is non-zero, right? So 𝑇𝑣 is non-zero and it satisfies this equation. So 𝜆 becomes 

an eigenvalue for 𝑇𝑆 and 𝑇𝑣 is the eigenvector also. So that is an interesting thing, right? So if 𝑣 

is an eigenvector for 𝑆𝑇, then 𝑇𝑣 is an eigenvector for 𝑇𝑆 with the same eigenvalue 𝜆. But 𝜆 has 

to be non-zero here. If 𝜆 is 0, things are a bit more murky and let's not, we will look at it in the 

next slide. But this is the main point here, okay? So hopefully this was illuminating. So it's very 

useful to use this result and we will use this result later on also. But it's important to know that 



the set of non-zero eigenvalues of 𝑆𝑇 will be equal to the set of non-zero eigenvalues of 𝑇𝑆, 

okay?  

So now the next question is: what about multiplicities, right? I have shown one non-zero 

eigenvalue is also present here, can the multiplicities be different? Can the algebraic 

multiplicities be different? Can the geometric multiplicities be different? It seems, it seems 

possible, right? So here is a, I think let me show you one example here. So here's an example. 

Supposing you take 𝐴 and 𝐵 as 2 × 2 matrices, okay? So here is an example. So maybe I 

should… So let us say 𝐴 is [0 1;  0 0] and 𝐵 is also, I think I want 0, 0 here and let me put 1 

here… No I shouldn't put 1 here, so let me just think of this a little bit. The danger of cooking up 

examples on the fly. Let me just see this once. 1 here, so maybe I need a 1 here. Okay, maybe, 

maybe I will get this right, I think, yeah, this is right, okay? So I think this is okay. Yeah, okay, 

this okay. So let me see. I mean, I want a particular situation for 𝐴𝐵 and 𝐵𝐴. If 𝐴 and 𝐵 were 

like this, I think I will get it. So let me just do this. [0, 1;  0, 0]. 𝐵𝐴 is going to be [0, 0;  0, 0], 

right? Yeah, I think this is what I wanted.  
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Okay. So so here is a… See when, this is 𝑆𝑇 and 𝑇𝑆, right, I mean this is a simple 2 × 2 case 

where everything is well defined. But still this is valid, this is not wrong. This is 𝑆𝑇 and 𝑇𝑆. And 

in one case you have 𝐴𝐵 being [0, 1;  0, 0] and 𝐵𝐴 being [0, 0;  0, 0]. So what happened here for 

𝐴𝐵? You have eigenvalues 0 occurring twice and there is only one eigenvector, isn't it? So here, 

when I say one, you mean really, you know, with the one linearly independent eigenvector. 



That’s what I mean here. This this, you do not have two linearly independent eigenvectors, that’s 

what I mean when I say one eigenvector. So here also you have 𝜆 = 0, 0. But you have two 

linearly independent eigenvectors. So what happened here is: the geometric multiplicity is 

different, but the algebraic multiplicity ended up being the same, okay? But we, I mean this is 

zero eigenvalue, it wasn't really covered in our previous result, right? Only non-zero eigenvalues, 

if they appear, they have to appear on both sides. But even then it is not clear how many times 

that non-zero multiplicity eigenvector should appear algebraically, how many times it should 

appear geometrically, okay? So geometrically at least it seems like the eigenvectors can, I mean 

the eigenvalues can, the geometric multiplicity may be different with 𝐴𝐵 and 𝐵𝐴, that seems 

likely because geometric multiplicity depends on so many other properties of the matrix. But 

algebraic multiplicity, what about that? Can we say something about that is the question, okay? 

So this is nice. So let's look at it.  
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But it turns out, at least to the extent to which I have seen the proofs of these things, when you 

want to talk about algebraic multiplicities, it's easiest to deal with matrices and determinants, 

right? So let's do that. So in the matrix determinant world, it is easier to prove this result because 

I am thinking of algebraic multiplicity ultimately, you know, so that is better. It is better in this 

world. So let us look at 𝐴𝐵 and 𝐵𝐴. A is an 𝑚 × 𝑛 matrix and 𝐵 is an 𝑛 × 𝑚 matrix, okay? So 

you see, let us say 𝐴, 𝐵 represent suitable linear maps 𝑆 and 𝑇. They are 𝑚 × 𝑛 and 𝑛 × 𝑚. Now 

𝐴𝐵 will be 𝑚 × 𝑚 and 𝐵𝐴 will be 𝑛 × 𝑛. So here is a similar situation to before, except that 

previously we thought of, you know, linear maps in an abstract way. Here I am talking about 



matrices specifically, okay? So here is a very, very interesting result. The result says, see, 

remember, |𝑡𝐼𝑚 –  𝐴𝐵|, right? So solution of this gives you eigenvalues, right? So eigenvalues, if 

you are worried about algebraic multiplicity of 𝐴𝐵, are roots of |𝑡𝐼𝑚 –  𝐴𝐵| =  0, isn't it? 𝐴𝐵 is 

𝑚 × 𝑚, determinant… 𝐼𝑚 is basically, 𝐼𝑚 denotes 𝑚 × 𝑚 identity matrix. In denotes an 𝑛 × 𝑛 

identity matrix, okay? So that is the notation, 𝑘 × 𝑘 identity, okay? So similarly eigenvalues of 

𝐵𝐴 are given by, so same thing for 𝐵𝐴 is given by roots of |𝑡𝐼𝑛  −  𝐵𝐴|  =  0, okay? So what this 

tells you is another way of writing this. Supposing let’s say 𝑛 ≥ 𝑚. Supposing you say 𝑛 is 

bigger, then this simply says |𝑡𝐼𝑛  −  𝐵𝐴| = 𝑡𝑛−𝑚|𝑡𝐼𝑚 − 𝐴𝐵| okay? So this is what this result 

says.  
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And this is a very nice result, isn't it? See, |𝑡𝐼𝑚  −  𝐴𝐵|, it's a polynomial. The roots of this 

polynomial are the eigenvalues of 𝐴𝐵. If you take that polynomial and multiply by 𝑡𝑛−𝑚, what is 

𝑡𝑛−𝑚? It is simply, you know, just all the powers of 𝑡 increase by (𝑛 − 𝑚), just simple 

multiplication, okay? That gives you the polynomial whose roots are the eigenvalues of 𝐵𝐴, 

okay? 𝐵𝐴 is 𝑛 × 𝑛 and that's the relationship between these two polynomials. So all the 

eigenvalues of 𝐴𝐵 will occur as eigenvalues of 𝐵𝐴 algebraically with the same multiplicities 

except for zero. The zeros’ multiplicity will go up by (𝑛 − 𝑚), right? So that is a very nice 

observation you can make when you have a result like this, okay? If you are concerned about 

algebraic multiplicity for eigenvalues, this relationship is very, very useful. Of course, geometric 

multiplicity is not mentioned here. So all the algebraic multiplicities of non-zero eigenvalues 

remains the same for 𝐴𝐵 and 𝐵𝐴, the algebraic multiplicity of 0 alone increases by 𝑛 − 𝑚 if 𝑛 is 



bigger, okay? Other way round it will increase by 𝑚 − 𝑛, okay? So that is the power of this 

result. It is a very nice result. Using determinants, we are able to get them, okay? So let's see a 

quick proof of it.  
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A proof is not very hard. It's sort of like one of those clever proofs by construction which is 

difficult to provide intuition for. But this is what you do for the proof. You construct two 

matrices 𝐶 and 𝐷, okay? Which are block matrices involving 𝐼𝑚, 𝐼𝑛, 𝐴 and 𝐵, okay? And this 𝑇 

also. Construct things like this. We know always the determinant of 𝐶𝐷 and determinant of 𝐷𝐶 

are the same, right? So this is same. So if you multiply 𝐶𝐷, you get this. You multiply 𝐷𝐶, you 

get this. So what is determinant of this? Determinant of this guy into determinant of (𝑡𝐼)𝑛, that is 

𝑡𝑛. What is determinant on this side? Determinant of this times the determinant of 𝑇… So maybe 

I should write that down. This guy is equal to determinant of 𝑡𝐼𝑚|𝑡𝐼𝑛 − 𝐵𝐴| and this is nothing 

but 𝑡𝑛, isn't it? Same thing here. This is |𝑡𝐼𝑚  −  𝐴𝐵||𝑡𝐼𝑛| and this is 𝑡𝑛, okay? So there is 

nothing difficult about this proof except that this construction of the 𝐶 and 𝐷 seems very non-

trivial. And how it comes about is a bit tricky. It's because it's got all these tie-ups here and you 

can see that it's quite nice, okay? It comes out very cleanly as a block triangular matrix and it 

gives you what you want. But the 𝐶 and 𝐷 are not very obvious, okay? But the result is quite 

nice. So now we know a lot more about 𝐵𝐴 and 𝐴𝐵, particularly through this relationship for 

eigenvalues, right? So the eigenvalues, non-zero eigenvalue set is exactly the same. Zero 

eigenvalue just gets repeated more when you go from one to the other, okay? So this is a nice 

relationship to know.  



Okay. So now let's move on to operators and adjoint. So far we haven't come to adjoint yet. 

We’ve just looked at general properties of this 𝐴𝐵 and 𝐵𝐴. Later on we will use these results 

where we need them, okay? Yeah. So I've summarized it here. If 𝑛 >  𝑚, then the eigenvalues 

of 𝐵𝐴 is basically the eigenvalues of 𝐴𝐵 union with (𝑛 −  𝑚) zeros. So this is the relationship.  

Okay. So now let us look at operator and its adjoint, okay? So now… Let me just go on for one 

minute. Yeah, okay, all right. So, so far we have looked at the adjoint of linear maps. Now we 

will specialize to the case of operators and look at what's interesting here, okay? So if you have a 

finite dimensional vector space, inner product space, you can have an operator from 𝑉 to 𝑉 and 

then that operator can also have an adjoint. I mean, nothing from the definition of adjoint stops 

this, right? We generally had a more general adjoint where we went to, I mean 𝑇 ∶  𝑉 → 𝑊. So if 

it were to take 𝑉 to 𝑉 also the same adjoint definition holds. Nothing is wrong in that. Here are 

some interesting properties. The property for the adjoint, the basic definition, right, this is more 

or less the definition. < 𝑇𝑢, 𝑣 > will be equal to < 𝑢, 𝑇∗𝑣 > and null of 𝑇 ∗ is (range of 𝑇)⊥ and 

dimension of range of 𝑇 equals dimension of range of 𝑇∗, all these were true in general for linear 

maps, isn't it? Now because it's an operator, the dimension of null will also be the same, okay? 

So that ends up being the same.  
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So let us draw a couple of pictures and then relate this to matrices. So you, if you have 𝑉, right? 

𝑇: 𝑉 → 𝑉. Both of these are the same, okay? 𝑇 is going to take you from 𝑉 to 𝑉. There will be a 

range of 𝑇, right? This range of 𝑇 which is a general subspace and then there is null of 𝑇, right? 



So this is, let us say null of 𝑇. Null of 𝑇 takes you to zero here, okay? And then the entire 𝑉 goes 

to range, right? So we say that. Now what about 𝑇∗, right? So 𝑇∗ is going to take you from 𝑉 to 

𝑉 again. But let us just show it in the other direction. This way, the dual of null 𝑇, right? So if 

you will have the dual of null 𝑇, it will be something like this, right? It will intersect only at zero. 

This will be (null 𝑇)⊥. What will be (null 𝑇)⊥? And that is equal to range of 𝑇∗, isn't it? Okay, 

same thing here. The dual of this guy, okay? So it's sort of difficult to draw this here. So let me 

draw this at the end so you will have the dual here, okay? It does not have too much intersection, 

but this is (range 𝑇)⊥. And that is equal to null 𝑇∗, okay? So this is sort of the picture that you 

would have. Any operator does this, okay? So what happens in the matrix world? If you have a 

being an 𝑛 × 𝑛 matrix representing this operator 𝑇, okay, and then you know 𝐴𝑇, okay? Let us 

say this is real matrices. 𝐴𝑇 is also 𝑛 × 𝑛, it represents 𝑇∗ and you can see all these things are 

true, right?  
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So what is < 𝑇𝑢, 𝑣 >? It is basically inner product < 𝐴𝑥, 𝑦 > okay? And that is the same as the 

inner product < 𝑥, 𝐴𝑇𝑦 >, isn't it? So what is the inner product of these two? It's basically, you 

can write it in, see it's < 𝐴𝑥, 𝑦 >, you can write it as… Let me just do it correctly. 𝑦𝑇𝐴𝑥, right? 

And you can also transpose this and then you will get… This also is actually equal to 𝑦𝑇𝐴𝑥, 

okay? All right. So both of these are exactly the same. You can work it out. So you get the same 

relationship. So you see the transpose is sort of well behaved with respect to that definition of the 

adjoint and you can see null 𝑇, the null 𝑇∗ is nothing but the left null and that's going to be 

perpendicular to the range of 𝑇, all of this works out fine. And dim range 𝑇 = dim range 𝑇∗ is 



nothing but the row rank equals column rank. And null 𝑇 = null 𝑇∗ is also a similar definition. 

So in the matrix world also all these definitions work out. So for operators and adjoint, whatever 

we saw before also holds okay? So this is interesting. 

What about eigenvalues for the adjoint, okay? So when 𝑇 itself is an operator, 𝑇 will have 

eigenvalues. And 𝑇∗ also is an operator, so 𝑇∗ will also have eigenvalues. Is there a connection 

between these eigenvalues? It turns out there is a very nice connection. So if 𝑇 is an operator in 

an inner product space, if 𝜆 is an eigenvalue of 𝑇, then  𝜆̅, okay… So this is 𝜆̅, okay? So 

conjugate of 𝜆, complex conjugate of 𝜆 is an eigenvalue of 𝑇∗, okay? So that is what this means, 

okay? So this is a very simple and elegant result relating the eigenvalues of the operator and its 

adjoint. If 𝜆 is an eigenvalue, 𝜆̅ is an eigenvalue of 𝑇∗, okay? Proof is not really complicated. So 

if 𝜆 is an eigenvalue, then you know that the (𝑇 −  𝜆𝐼) is invertible, it is not invertible, right? So 

(𝑇 −  𝜆𝐼) ends up being not invertible, which means the range of (𝑇 −  𝜆𝐼), the dimension of 

that is less than dimension of 𝑉, okay? So this we know for sure, the moment 𝜆 is an eigenvalue. 

Now what is the adjoint of (𝑇 −  𝜆𝐼)? We know that adjoint of sum of two operators is the 

adjoint of each of them, so you have (𝑇∗  − (𝜆𝐼)∗). Now if 𝜆𝐼, then you have to do  𝜆̅, okay? So 

that's what happens here. So the adjoint goes like this.  
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Now we know an operator and its adjoint have the same range dimension, right? So that is the 

property that we saw. So dim range (𝑇 −  𝜆𝐼) = dim 𝑟𝑎𝑛𝑔𝑒 (𝑇∗ −  𝜆̅𝐼), okay? So now this guy, 

if the left hand side is less than dimension of 𝑉, clearly the right hand side is also less than 



dimension of 𝑉. So this means dim range (𝑇∗  − 𝜆̅𝐼) < dim 𝑉. That implies (𝑇∗ −  𝜆̅𝐼) is also 

non-invertible. So that implies 𝜆̅ is an eigenvalue of 𝑇∗, okay? Simple enough proof to show that 

this relationship is true, okay? So it's very nice. So if 𝜆 is an eigenvalue,  𝜆̅ is an eigenvalue of 

𝑇∗. So if you are in the real world, if 𝜆 is real, then you know 𝜆̅ is also going to be real, So 𝐴 and 

𝐴𝑇 will have, you know, if everything is real, then they will have the same eigenvalues. But if 

you are in complex, then you have to do conjugate transpose for 𝑇∗. Assuming, you know, the 

matrix is with respect to an orthonormal basis, you can do all that, okay? So this is a good 

relationship to have. So that's done.  

Okay. So what about these eigen, the operator-adjoint products? We saw before that this 

operator-adjoint product is something really interesting. It sort of represents the operator in some 

way because it does not nullify the range in either direction. So let us look at the case where 

𝑇: 𝑉 → 𝑊 now, is a linear map and 𝑇∗: 𝑊 → 𝑉. And then we look at 𝑇𝑇∗ which is an operator. 

𝑇∗𝑇 which is also an operator. Now we can think of eigenvalues of these two and we know from 

our previous result, right, the non-zero eigenvalues of 𝑇∗𝑇 and non-zero eigenvalues of 𝑇𝑇∗ are 

the same, okay? This is the 𝐴𝐵, 𝐵𝐴 result, right? So difference is only in additional zero 

eigenvalues of one of the two. So for instance, if you were to take dimension of 𝑉 greater than or 

equal to this, so one defines something called singular values of a linear map 𝑇, okay? See, so far 

we couldn't associate eigenvalues with a general linear map 𝑇, right? If you had a map from 𝑉 to 

𝑊, and 𝑉 and 𝑊 were not the same, we don’t have eigenvalues to assign.  
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So in lieu of that, people usually talk about what are called singular values of a linear map, okay? 

What are singular values of linear map 𝑇? These are the eigenvalues of 𝑇𝑇∗. I have just taken 

dim 𝑉 ≥ dim 𝑊, that's just to define this in terms of 𝑊, in terms of the smaller ones, right? So 

see, you can also think of it as, see you can also say, or eigenvalues of 𝑇∗𝑇, isn't it? Okay? See, 

because these two have the same eigenvalues more or less except for some zero eigenvalues that 

are additional, so one can define it like this. But I am, I'm just being a little bit more careful here 

and I am taking the smaller dimension, I am defining it as the eigenvalues of the smaller 

dimensions. A bunch of zeros I am ignoring, but that’s okay. I mean, you can do it either way, 

but the singular values are eigenvalues of 𝑇𝑇∗ or 𝑇∗𝑇. I think it's okay, as long as you understand 

that zeros are the only things that differ here, you can define it either way. So we can take it as 

the smaller one so that you do not have to keep track of a lot of values, okay? So singular values 

of a linear map 𝑇 is eigenvalues of 𝑇𝑇∗, I mean, 𝑇∗𝑇 also is the same, okay?  

So these singular values will come to represent 𝑇 in some very fundamental, nice way, okay? So 

if you think about it, the eigenvalues sort of capture the essence of the operator, right? When you 

go to the eigenvector basis particularly for diagonalizable matrices, it becomes diagonal. So 

likewise these singular values will capture a lot of fundamental properties of the linear map, 

okay? Even when 𝑉 and 𝑊 are not the same, okay? So singular values are very, very important. 

Later on we will see something called a singular value decomposition for a linear map. And at 

that point you will see how important they are and they have huge applications today. They have 

come to dominate applications in linear algebra and matrices and machine learning. And in so 

many other areas singular values dominate applications, so it's very important to get a handle of 

that. And it's not surprising, we'll come back and later see more properties of this. And it's not 

surprising at all why this 𝑇𝑇∗ represents 𝑇 also in some way, isn't it? So because, you know, it's 

not really changing the range in any way, there is no additional null space which creates the 

problem, okay? So singular values are important. I am just defining it here, we will redefine it 

later when we see singular values in more detail, okay?  

Okay. So this final slide in this lecture captures a few things which I mentioned before in a 

slightly different language. I want to just bring it down to another language and nail it down, 

okay? So this is this least squares problem we talked about and its connection to adjoint and 

something called normal equation, and this pseudo-inverse. I'll just quickly summarize this. 

Supposing you have a linear map from 𝑉 to 𝑊 and you have a vector in 𝑊, okay? What is this 

least squares problem? It is like solving 𝑇𝑣 =  𝑤, except that sometimes it may not have a 

solution. If it doesn't have a solution, you simply find the least distance between 𝑇𝑣 and 𝑤, right? 

So that is this min
𝑣

||𝑃𝑣 −  𝑤|| . If you solve this, you get a least squares solution, okay? We 

know by orthogonal projection that there is a solution and the solution is such that (𝑇𝑣 −  𝑤) is 

orthogonal to range 𝑇, isn't it? So that's the solution. So what does that mean? That this (𝑇𝑣 −

 𝑤) is in (range 𝑇)⊥, okay? Now what do I know? Null 𝑇∗ is the same as (range 𝑇)⊥, isn't it? So 

when you say (𝑇𝑣 −  𝑤) belongs to (range 𝑇)⊥, all you are saying is (𝑇𝑣 −  𝑤) belongs to null 



𝑇∗, okay? So what is the meaning of a vector belonging to null of 𝑇∗? 𝑇∗ times that has to be 

equal to zero, okay? So all these things work out in a very clean way and you get what is called a 

normal equation, okay? So this is 𝑇∗𝑇𝑣 =   𝑇∗𝑤. So this is the normal equation. In simple ways, 

the orthogonal projection is sort of hidden here. But you can see I have just put it down. We have 

seen all this before, I am just putting it out in a language which is clear enough. So this gives you 

the normal equation.  
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Now if this 𝑇∗𝑇 is invertible… Now remember, 𝑇∗𝑇 is now an operator, right, from 𝑉 to 𝑉, 

okay? So if this were to be invertible, you can do, you know this will have a unique solution. So 

we will have a unique solution here and even otherwise it will have a solution, but otherwise this 

is an invertible, you can see that there is a unique way to easily get the solution. And so that will 

look like this. So how will the solution look? When 𝑇∗𝑣 is invertible, it will look like 𝑣 =

 ((𝑇∗𝑇)−1 𝑇∗𝑤), okay? So what am I trying to solve here? I am trying to solve 𝑇𝑣 =  𝑤, and 

then you get this ((𝑇∗𝑇)−1 𝑇∗𝑤), okay? So this is the solution. It's called the, so this, so this guy 

here is called the pseudo-inverse, okay? So you can see why. Because if you, if you hit it with 𝑇, 

you get 𝐼, okay? So this is, when 𝑇 is invertible, this gives you, this gives you something, right? 

So that's nice to see, yeah. So, see, invertibility is a bit tricky here for 𝑇. See, if 𝑇 were to be a 

square matrix, then some special cases will appear here. But if 𝑇 is rectangular also, there is no 

notion of inverse for 𝑇 as such, right? But this has that property, this  ((𝑇∗𝑇)−1 𝑇∗𝑇) ends up 

being 𝐼, because you see this 𝑇∗𝑇 will come here and this (𝑇∗𝑇)−1 will come here, you get 𝐼, 

okay? So you can think of what is left here as some sort of an inverse for 𝑇. It’s not a proper 



inverse if 𝑇 is not a square matrix but it's called a pseudo-inverse, okay? When 𝑇 is not a square 

matrix. If 𝑇 is a square matrix, it becomes the inverse when this is well defined, okay? So this is 

just some language which we did not use before. I just thought I will summarize all of this, okay?  

So this concludes our study of adjoint. And beginning next week onwards we will start looking 

at very interesting operators such as self-adjoint operators, normal operators and these two 

operators, these two types of operators dominate applications. Quite a few applications use these 

type of special operators and we'll see some fantastic properties that they have in the next week, 

okay? Thank you very much. 


