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Minimum Mean Squared Error Estimation 

Hello and welcome. In this lecture we're going to see another application for orthogonal projection. 

Like I said, I mean, anytime you solve a minimization problem there's lots of applications and this 

time the application is called Minimum Mean Squared Error estimation. Now this is a big area by 

itself, there are books that are written on this topic. But at the essence, essentially the idea is around 

orthogonal projection and Linear Algebra, okay? So let us see how the setting goes. I will consider 

a particularly simple setting. There are more complicated settings in which you can do the same 

thing, okay?  

So this is a quick recap. Let me not go into great detail with the recap. Okay. So we are going to 

consider a particular inner product space for this problem. This will be the inner product space of 

bivariate functions. What is bivariate? There are two variables 𝑥 and 𝑦. And I am going to look at 

functions over those two variables. What can I do when I think of functions, when I have two 

variables? When I have one variable, I can write the function in one line. When I have two 

variables, I have to write it as a table, okay? So now my function I am going to write as a table. 

But usually when you think of two variables, you are thinking the two variables as taking real 

values. Infinite number of values for one, infinite number of values for the other. We are not going 

to do that in this example. It is a simple example. We are going to assume our variable takes finitely 

many values, okay? It will take finitely many values in one variable and finitely many values in 

the second variable, okay? In fact, and if you look at my example, I have said one variable takes 

only m possible values another variable takes only 𝑛 possible values. So I can now tabulate my 

function as an 𝑚 × 𝑛 matrix or table, right? So I can put 𝑓11, 𝑓12, … So 𝑓11 is basically that function 

evaluated at (𝑥1, 𝑦1), 𝑓12 is function evaluated at (𝑥1, 𝑦2), okay? There are only 𝑛 different values 

of 𝑦, 𝑚 different values of 𝑥. It's a simple sort of function, okay? So you can tabulate it and look 

at it as a function. All right? So this is the vector space and clearly this is a vector space, no? I can 

have any number of functions and functions can be added. I will get another function. Or you can 

multiply the function with a scalar, I will get another function. All of this can be quickly written. 

It's like the matrix space in some sense, okay?  

So there is an inner product that we will define on this space, okay? My inner product is going to 

be slightly different. Normally so far we have not looked at these weighted inner products too 

much, right? We have always looked at, you know, weight being one. So here I will look at a 

weighted inner product, okay? So I will have a weighting function which will again be a table, 

okay? 𝑝𝑖𝑗. And I'll keep the weighting function as non-negative so that my, you know, inner 



product is valid. I will define my inner product of two functions 𝑓 and 𝑔, in this fashion, okay? 

 ∑ (𝑝𝑖𝑗𝑓𝑖𝑗𝑔𝑖𝑗)𝑖,𝑗 , okay? So the weights enter the picture and the values of the two functions, okay? 

So very simple inner product space. I am visualizing it as the inner product space of bivariate 

functions. If you want, you can think of it as just matrices and the weighting function is something 

that's there, okay? So just the small added complexity.  
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What's interesting is the subspace that I'm going to choose for projection, okay? So I'm going to 

choose the subspace of univariate functions, okay? So I have a function of two variables. 

Supposing now I look at a function which depends only on 𝑥, okay? It does not depend on 𝑦 at all, 

okay? I can still think of it as a two variable function if I want, okay? So for every value of 𝑦, what 

will I do? I will simply repeat the same 𝑥, okay? So that way this univariate function, function of 

only 𝑥 becomes a subspace of the vector space of bivariate functions, okay? So here is an example 

for you to think of, okay? You just make all the columns identical, okay, then you have a univariate 

function subspace of this bivariate function space, okay? So these are all just terminologies. I am 

just using them for you to visualize what's happening, okay? So this is definitely a valid subspace 

of the previous vector space that I defined. There's nothing wrong in this, okay? So this is the 

univariate subspace, okay?  

Do we have an orthonormal basis for this? Right? Remember the inner product. Inner product had 

weighting, okay? So I am looking at a weighted inner product here. There is that 𝑝𝑖𝑗 which 

multiplies. So you have to be mindful of that. Even so, you can quickly see that you can come up 



with a very nice orthonormal basis for this subspace 𝑈, okay? So I have given you one here. I 

mean this is not the only one. Maybe there are others, I don't know. But this is at least a valid 

orthonormal basis, you can see I have kept (1, 0, 0, 0) (0, 1, 0, 0), I've just kept everything the same 

and I have normalized, right? So you notice the normalization involves a summation over 𝑗 of 

𝑝1𝑗, 𝑝2𝑗 , … , 𝑝𝑚𝑗 , …, you can check that it works out all correctly. Clearly the inner product between 

any two of these vectors is zero. So it's an easy exercise to check that this is a valid orthonormal 

basis, okay? So you have a subspace of univariate functions and that has an orthonormal basis, 

okay? So it's all easy stuff that we are doing, it’s not anything very complicated.  
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So now we can ask this question: what is this projection on to this subspace, right? You have a 

subspace, you have an orthonormal basis, of course you have to think of projection next. What is 

projection? That is also easy enough to do, okay? So you take an arbitrary bivariate function 𝑓 and 

then you want to look at the projection, you simply apply the standard formula you know, right? 

You take the inner product, okay? So that inner product with each of your basis vectors is going 

to multiply that basis vector itself and then you add, right? So it's very easy to do. And you can do 

the mechanics of it, I'm not going to provide too much detail. You will see it will come out like 

this, okay? So you will get a ∑ 𝑝𝑖𝑗𝑗  in the denominator. In the numerator you will get ∑ 𝑝𝑖𝑗𝑗 𝑓𝑖𝑗 

like that it will come, okay? So you will get all of these things and you will get 𝑃𝑈. You can collect 

it together. And when you collect it together you can write it in this sort of interesting little way. I 

am going to define this 𝑝𝑗|𝑖, okay? So this is always read as p j given i, okay? So it’s a common 

terminology arising from probability and all that. So you can define that as, say for instance p 1 



given j or p j given 1, I am sorry, 𝑝𝑗|1 is 𝑝1𝑗/ ∑ 𝑝1𝑗𝑗 . So this fraction, you know, you take this 

summation inside this bigger summation and whatever the fraction you get there I am going to call 

as p j given i. Now if you notice, 𝑝𝑗|1 also has a lot of interesting properties. So that is why we 

have defined it like that. Once you define it like that, this 𝑃𝑈(𝑓) I can sort of add up everything 

together, you will get ∑ 𝑝𝑗|1𝑗 𝑓1𝑗 like that for the first one. And the second one will be ∑ 𝑝𝑗|2𝑗 𝑓2𝑗. 

The last one will be ∑ 𝑝𝑗|𝑚𝑗 𝑓𝑚𝑗 , okay? So this is a valid projection, okay? So you got a univariate 

function after projecting from a bivariate function, okay? So that is easy enough to see. And this 

𝑝𝑗|𝑖 is this interesting little definition.  
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Okay. We have this vector space. We have this weighted inner product, we have the subspace of 

univariate functions. What can we do with it? Turns out you can do, you can solve estimation 

problems, okay? So this I'm going to assume a little bit of knowledge of probability. Even 

otherwise I think you can just look at the previous example. If you don't have too much of a 

background in probability, you can ignore this estimation part of it. But the previous example was 

good enough, was clear enough without any additional assumptions. So now let's say you have 

two random variables 𝑋, 𝑌. They take values in discrete finite real sets 𝒳 and 𝒴, okay? So this is 

an assumption you can make. It’s reasonable, we'll say 𝑋 and 𝑌 have some joint distribution, okay? 

So they are jointly distributed in some way. 𝑌 has some information about 𝑋, 𝑋 has some 

information about 𝑌. So you have a joint distribution and that probability is 𝑝𝑥𝑦. 𝑝𝑥𝑦 is the 

probability that 𝑋 takes the value 𝑥 and 𝑌 takes the value 𝑦. So this is a joint distribution. For all 



that, we know that the joint distribution probability is between 0 and 1, it is non-negative for sure, 

okay?  
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So the estimation problem asks this question. Supposing I observe 𝑋, okay? 𝑋 takes the value 𝑥. 

How do you estimate a value for 𝑌, okay? So this is at the heart of the estimation problem. This 

can also be thought of as a learning problem, but usually estimation is in a probabilistic setting, 

fixed probabilistic setting, not a real life setting where you have to, you know, plug in the 

probability model and figure out those things which is what you would do in learning. So here in 

estimation, you are already usually given a probabilistic setting and you have to figure out how to 

estimate a value for 𝑦. So it turns out this problem has a nice connection with what we have been 

studying so far, okay? So that is what I want to, hope to show you, okay? So now these random 

variables have connections to the bivariate function vector space that we defined before, okay? So 

it is very easy to see the connection.  

Let us take, let's suppose I take some function of the two real valued random variables 𝑓(𝑋, 𝑌). It 

is actually a bivariate function, isn't it? 𝑋 takes values in the 𝒳. I can think of it as going over the 

rows. 𝑌 takes values in 𝒴. I can think of it as 𝑛 values going along the columns and each 𝑓𝑖𝑗 is 

simply this function evaluated when 𝑋 becomes 𝑥 and 𝑌 becomes 𝑦, right? So that is not too bad 

to imagine. So we can think of any function of 𝑋 and 𝑌 as being my big bivariate vector, okay, 

bivariate function vector, that is easy enough to see, okay? And there is also the subspace which 

is very well defined. Subspace is functions of all, you know, real valued functions of 𝑋 alone, 



okay? And this, again this picture of this column repeating comes into the picture. The same thing 

as before, okay? Now when you want to estimate 𝑌 given 𝑋, you are observing only 𝑋. So your 

estimate is going to be some form of a function of 𝑋, right? So that is the crucial idea which 

connects everything together, okay? So given that 𝑥 ∈ 𝑋, 𝑋 takes this value 𝑥, we usually set the 

estimate of 𝑌 which is usually called 𝑌̂ to be some function of 𝑋, okay? So this is the important 

idea that connects everything together, okay? So you are observing one random variable 𝑋. There 

is another random variable 𝑌 which has a joint distribution with this and maybe you understand 

the joint distribution in some way. You observe 𝑋. If you want to estimate 𝑌, the best you can do 

is come up with some function which, you know, function of 𝑋 which will give you 𝑌, okay? That 

is not an unreasonable thing to do. It is very reasonable. So this is what we will do as well.  
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But then how do you know how good an estimator it is, okay? Is it a very good estimator? How 

do you measure the estimator? You use something called mean square error. This mean square 

error, it has this definition, okay? Look at this definition, you ∑ 𝑝𝑥𝑦𝑥,𝑦  which is your probability. 

Non-negative, you know, weighting function so to speak. And (𝑦 −  𝑔(𝑥)), so whatever this (𝑦 −

 𝑔(𝑥)) might be, this guy is nothing but, you know, some function of 𝑥 and 𝑦, right? This guy is a 

function of 𝑋 and 𝑌, okay? It belongs to bivariate function space that we've been considering so 

far, right? This simple bivariate function space that we've been considering, okay? So this mean 

square error which is usually defined as summation 𝑝𝑥𝑦(𝑦 −  𝑔(𝑥))
2
, its, you can see why this is 

a very good measure of how good an estimator is. You want to weight it by the joint probability 



and the error you have when that actually happens, isn't it? (𝑦 −  𝑔(𝑥))
2
. Now that you see is 

nothing but the norm that we defined in this bivariate function space for this function (𝑦 −  𝑔(𝑥)), 

okay? So this mean square error which is a very good, you know measure of an estimator is actually 

the norm from the weighted inner product if you choose the weights to be 𝑝𝑥𝑦 which are the joint 

probability functions, okay? So this mean square error has a very nice connection. So if you want 

a good estimator, it should have low MSE, mean square error or low weighted norm where the 

weights come from the joint distribution. That's it. So that sort of brings the estimation problem 

into the Linear Algebra world where you just have a bivariate function space with this weighted 

inner product and all you're doing is norm-minimization from a subspace, right? 𝑔(𝑥) comes from 

a subspace, isn't it? It's a subspace of all univariate functions of 𝑋, right? So again you are doing a 

norm minimization for estimation, okay? So this norm-minimization will show up in so many 

different guises and so many different names, it's all the same, okay?  
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So what is minimum MSE estimation? It's Minimum Mean Square Error estimation. We know 

how to do that now. 𝑌 is actually a vector in this bivariate function space 𝑉. If you let the 𝒴 be 

{𝑦1, … , 𝑦𝑛}, it is just simply rows, you know, [𝑦1, … , 𝑦𝑛; 𝑦1, … , 𝑦𝑛], it’s not even a bivariate 

function. It's a univariate function but a function of 𝑌, not 𝑋, right? That's important to know. 𝑔(𝑋) 

is closest, if you want to do minimum mean square error estimation, it's the closest to 𝑌, okay? 

The closest vector in 𝑈 which minimizes ||𝑌 −  𝑔(𝑋)||
2
, right? So the MMSE estimator, the 

estimator that is going to minimize your mean square error is simply a projection of 𝑌 onto this 



subspace 𝑈, okay? How do we do projections? We know how to do that, right? You have to define 

this given probability 𝑝𝑦𝑗|𝑥  which is 𝑝𝑥𝑦𝑗
 by summation and 𝑔(𝑥) is simply the summation over 

𝑗 this given times 𝑦𝑗, okay? So this is also called, in the parlance of estimation, this is called 

conditional expectation. Expectation of 𝑌 given 𝑋, okay? So at least in the simple finite case we 

are able to quite nicely show that the MMSE estimator is the conditional expectation which is 

defined in this fashion. In fact the assumptions that I made on, you know, finite domain and all 

that is not really needed. As long as you can extend, as long as the inner product space is still valid, 

you can see why this will always be true, isn't it? So it will work out quite decently, okay? So that's 

minimum MSE estimation.  
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I'll close with a couple of, just mentioning couple of applications for estimation. For instance in 

the lab when you measure a physical quantity, you know, any quantity, it could be, when you 

measure, you will see that you always take multiple repetitions and then take the mean. What 

you're doing is actually an estimation, right? Every measurement is not the actual physical 

quantity, it's the physical quantity plus noise. And when you take the mean of multiple 

measurements, you're estimating the original physical quantity and eliminating noise in some way. 

And you're doing an MMSE estimation. So there are fantastic applications of MMSE estimation. 

Every time you measure something in a lab and other very more interesting, much more interesting 

applications are things like telecommunications where you transmit a bit and a noisy version is 

received and the receiver has to estimate the transmitted bit from a noisy version of it that it 

receives at the receiver, okay? So these are the kinds of problems. Electrical engineering and signal 



processing are full of such problems of estimation, okay? That's the end of this lecture. Thank you 

very much. 
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