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Orthogonal Projection 

Hello and welcome to this lecture. We're going to talk about orthogonal projection in this short 

lecture. We will talk about how, you know, you can use an operator, a linear operator in a vector 

space to do something called orthogonal projection onto a subspace. In the subsequent lectures, 

we will see some very important applications of this. But the idea of this is actually quite simple. 

In small dimensions one can visualize this very easily. We already saw a little bit of it in a very 

simple case. As we go forward, we'll study more about this idea, okay? So let us get started.  
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Okay. A quick recap. We have been studying vector spaces over real and complex fields. We know 

their association with matrices and linear maps and the four fundamental subspaces, solving linear 

equations, eigenvalues and eigenvectors, how they are defined and how the invariant subspaces 

simplify the matrix representation into a diagonalizable matrix in some cases. And then we studied 

inner products, norms, orthogonality, orthonormal basis. That's where we are right now. We looked 

at orthogonal complement and we'll put all that into some use in this, in defining orthogonal 

projection, okay? So that's where we are currently. Okay. So firstly let me begin with general linear 



maps. Let us say you have a subspace of 𝑉 and you want to think of constructing an operator. Not 

just any operator in the vector space but an operator whose range will be, say, equal to 𝑈, okay? 

Or may be contained in 𝑈, okay? So I put equal to here. but range is contained in 𝑈 or equal to 𝑈 

or something like that. So the range has got to do with the subspace that you have chosen, okay? 

So is that possible? Is that feasible? Or am I asking for something which is too much? Well, it 

turns out yes. In fact, there are quite a few, right? You can, you know, start with... So how do you 

specify a linear map 𝑇? Linear operator 𝑇? You have to look at the basis for 𝑉, any basis that you 

like. And for each 𝑣𝑖 in the basis, I have to say what 𝑇 maps it into. So as long as 𝑇 maps each 

vector here into something in 𝑈, right, you will always have the range being inside 𝑈, okay? In 

fact you can make it equal to 𝑈 by choosing, you know, enough independent vectors inside 𝑈 in 

this for mapping, okay? So this seems like it is easy to do, right? So I can make a linear operator 

in this fashion very easily. So I can send a vector from my vector space into the subspace of choice, 

okay?  
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So out of all these kinds of choices, there is one special choice which is called orthogonal 

projection and it has a lot of powerful properties. And it's one specific linear operator which will 

take any vector into the subspace 𝑈 or on to the subspace 𝑈 and in a particular way. This orthogonal 

projection sort of way, I will describe what that is as we go along, but this is the context. And you 

can keep this in mind. Then also remember that there are many possible operators which can take 

you into a space. Out of them, this orthogonal projection is a little bit special. So we will see what 

is special about it as we go along. Okay. So a quick recap of orthogonal complements. We saw 



that in a previous lecture, supposing you have a subspace of a vector space. We define the 

orthogonal complement as the collection of all vectors that are orthogonal to every vector in 𝑈, 

right? So that is how we define the orthogonal complement. We saw this wonderful property that 

𝑈 and 𝑈⊥, the orthogonal complement of 𝑈 is denoted 𝑈⊥, 𝑈 and 𝑈⊥ have a direct sum which is 

equal to the entire vector space 𝑉, okay? So we saw that. And how do you find 𝑈⊥? I gave you 

this little method here. There are other methods also, but this method is: you start with an 

orthonormal basis for 𝑈, you extend it into an orthonormal basis for 𝑉 and then 𝑈⊥ is simply the 

extended vectors that you have, okay? So the orthonormality is important here. And that gives you 

all that you want for 𝑈. This is a very quick and easy way for doing, constructing 𝑈⊥ and finding 

it out, okay?  
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And here is a little bit of a more of an explanation of what can happen here. So if you take an 

arbitrary vector 𝑣 in the entire vector space, how do you find its coordinate representation in an 

orthonormal basis in this chosen orthonormal basis? You have this very simple formula, right? 

Because it is orthonormal, you simply have to take the inner product, okay? With respect to which 

it is orthonormal, okay? < 𝑣, 𝑒1 > 𝑒1  +  … entirely, okay? So this gives you 𝑣, the entire vector 𝑣 

and you can quickly identify two vectors, right? One in 𝑈 and one in 𝑈⊥, right? This is not 

mentioned here, but this belongs to 𝑈⊥, okay? And the sum of these two guys 𝑢 + 𝑢⊥ = 𝑣, okay? 

That just directly comes from the way this, you know, orthonormal basis property behaves. 

Because it is orthonormal, you have this very simple expression for 𝑣. And because it is such a 

simple expression, it sort of splits into two halves. 𝑢 and 𝑢⊥. So you are able to identify here from 



the orthonormal basis extension 𝑣 as the sum of two vectors 𝑢 and 𝑢⊥ and they add up to 𝑣. And 

we also know that this is unique, right? This u is unique. Irrespective of whatever orthonormal 

basis you pick, this 𝑢 ends up being unique. You can prove that as well, right? So that property we 

know, okay?  
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So let's see an example of this and sort of see how this works in practice. So here's a very simple 

example. In class I tend to do simple examples to give you an idea of how this whole thing works. 

Here is a 𝑈, right? I am doing this example in ℝ4, right? You can evidently see that this example 

is in ℝ4, okay? We’ll start with a very simple subspace. It's spanned by these two basis vectors. 

(1, 0, 0, 0) and (0, 1, 0, 0). This is clearly a basis. I'll do an orthonormal basis extension. It's very 

easy to do, okay? It's the standard basis, right? So I extend it in this fashion. So I quickly identify 

𝑈⊥ as the span of the remaining two guys. That's easy. And any 𝑣, I have taken an example 𝑣 here, 

(1, 0, 1, 1), and it can easily quite easily be seen as 𝑢 + 𝑢⊥. And that is just (1, 0, 0, 0) +

 (0, 0, 1, 1). You can see that this one belongs to 𝑈⊥. This one belongs to 𝑈. And, I mean, if you 

want, you can write it down in the clear way as before. The inner product, right? So how do you 

identify the coefficient? You take the inner product of these guys. So you see this is 1, this is all 

0, okay? So you get (1, 0, 0, 0) as the 𝑢 part. For the 𝑢⊥ part, you see that the first one is 0, second 

one is 0, third and fourth, it's quite trivial to see that that formula works, okay?  

So I am going to do the same thing but with a different basis. So you can see here these two are 

equal, they are equal. But the basis is different, okay? So different basis, okay? It’s another basis. 



It is also orthonormal, okay? So this is also orthonormal. You can check that it is an orthonormal 

basis, okay? But it is not the same as the standard basis, it is a different basis. So that hopefully 

gives you another example. I just want to show what happens if you take another orthonormal 

basis, right? So if you take this orthonormal basis, things worked out like this. What if you take 

another orthonormal basis and do something else with it? Here is an orthonormal basis extension, 

okay? So I've taken this guy and I've extended it to a basis for the entire vector space 𝑉. I am 

putting this one here simply to indicate that this is a different basis, okay? From the previous one, 

from the standard basis that we had. So 𝑈⊥ now you can again identify is... So you can see 𝑈⊥ is 

also the same as this, right? So it's the same thing. But the basis is different, okay? So different 

orthonormal basis. Now if I take 𝑣 in this basis, right, in this new basis, I am taking a vector 𝑣. 

You can write it as 𝑢 + 𝑢⊥ and that would again be (1, 0, 0, 0)  +  (0, 0, 1, 1). So if you want to 

see why that is, you can see, you know... So this 𝑣 maybe I should write it down in more detail. 

So this 𝑣, so let us call it, I will call this 𝑒1, this one 𝑒2, this is 𝑒3 and this is 𝑒4 just for convenience. 

So what is going to be < 𝑣, 𝑒1 >? So that is going to be (
1

√2
) 𝑒1  +  (

1

√2
) 𝑒2, right? So I am taking 

the inner product here with this. 
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No, I think, did I make a mistake? Let me just strike it out. No, that is correct, I think that is correct. 

I do not know why I wrote that out. Plus these two would again work out to something, right? So 

if you do < 𝑣, 𝑒3 >, that's going to be √2𝑒3 plus, if I do an inner product with this guy I am going 

to get zero, right? So this, the last one just works out as zero, okay? So you do not have an 𝑒4 

component in this, right? So this is how it works out, okay? And that is 𝑣 in, written in this basis. 



If you want to write it out like that, okay? And what is the 𝑢 part? So these two together will make 

the 𝑢 part of it, okay? So the 𝑢 part is now (
1

√2
) 𝑒1  +  (

1

√2
) 𝑒2. And that will work out to, you 

know, you can see that that will work out to (1, 0, 0, 0), right? That is not in this basis though. So 

one needs to be a bit more careful here. So it's just (
1

√2
) 𝑒1  +  (

1

√2
) 𝑒2. So this is in the... I'm sorry 

for that, I think I messed this up a little bit. So hopefully, let me just clean this up here. So this 1 

is wrong, this should not be there, it should also not be there, okay? So this is in the original basis. 

So even if I pick (1, 0, 1, 1) in the new basis, you see it decomposes into 𝑢 + 𝑢⊥ and it goes into 

the same 𝑢 in the original basis, okay? So of course if you write 𝑢 in the new basis, it will be 

something else. But it goes back to the same u in the original basis, so that tells you the uniqueness 

of 𝑢 and 𝑢⊥. Even if you change the basis with respect to which I'm doing the orthonormal basis 

calculation for figuring out how we decompose this into 𝑢 and 𝑢⊥, I will get the same vector 𝑢 and 

𝑢⊥, okay? So that's clear enough to see from that point of view, okay?  

So hopefully this was a clear enough example. So basically I am showing an example of a subspace 

𝑈 and two different basis choices for the orthonormal basis and two different orthonormal 

expansions. One ends up being the standard basis, the other ends up being some other basis. And 

then I try to write a vector, okay? Which is (1, 0, 1, 1) in the original basis. I am writing it in terms 

of u plus u perp and I get (1, 0, 0, 0) and (0, 0, 1, 1) and then I take a vector which is (1, 0, 1, 1) in 

the new basis, okay? And that will end up being something else in the original basis. But because 

I picked (1, 0, 1, 1) and then when I wrote 𝑢 + 𝑢⊥ and when I saw what happens here, the 𝑢 ends 

up being the same, right? So you get the same thing there. It's just that it has to work out like that, 

okay? Yeah, so that works out correctly, okay? So 𝑢 is (1, 0, 1, 1) in the old basis and 𝑢⊥ is again 

√2 times this. That will work out as (0, 0, 1, 1) in the old basis, okay? So you pick (1, 0, 1, 1) but 

this (1, 0, 1, 1) is in the new basis. It works out in this fashion, okay? So hopefully this example 

was interesting enough for you to see how the same... You can pick whatever basis expansion you 

want and you would get the result that you want here, okay? So writing in terms of u and u perp is 

illustrated in this fashion, okay?  

Okay. So let us move on to define orthogonal projection. So hopefully by now you are convinced 

that if you have a subspace 𝑈, finite dimensional subspace of a vector space 𝑉, you can always 

write it as 𝑈 + 𝑈⊥. And how do you do that? You pick your favorite orthogonal bases for 𝑈, extend 

it to an orthonormal basis for 𝑉 and then pick up only the 𝑈 part of it, you get your 𝑈, okay? So 

that seems like a clear enough way. And it’s unique as per the definition here, okay? So the 

orthogonal projection operator 𝑃𝑈 basically works in this fashion, okay? So it maps a vector 𝑣 to 

𝑢, okay? And what is this 𝑢? 𝑢 is obtained by the decomposition of 𝑣 into 𝑢 + 𝑢⊥. And where 𝑢 

comes from the vector space 𝑈 and 𝑢⊥ comes from the orthogonal complement 𝑈⊥, okay? So 

clearly this is a linear operator. You do very clearly linear operations. And it’s well defined because 

u is unique. Whatever, I mean just because you change something, 𝑢 is not going to change. 𝑢 is 

going to be the same thing, okay? All right. So here's an example, okay? So let's take a simple 



definition for 𝑈. 𝑈 is a one dimensional subspace, okay? So how do you project, how do you do 

an orthogonal projection onto a one dimensional subspace 𝑈, okay? So let us take one non-zero 

vector and define the one dimensional subspace as a span of that non-zero vector 𝑥, okay? You 

see quickly that the orthonormal basis for 𝑢 is simply 𝑥/||𝑥||, right? So this is the definition for 

the orthonormal basis. And 𝑃𝑈 will work out as, 𝑃𝑈 acting on any 𝑣, sorry I think I am missing that 

here, 𝑃𝑈 acting on any 𝑣 will simply be < 𝑣, 𝑥 >
𝑥

||𝑥||
2. So how did I get this? You can see that. So 

any 𝑣 can be written as, so you, how would you do this? So let us say we call this 𝑒1, okay? And 

you extend 𝑒1. So you extend to get a basis {𝑒1, 𝑒2, . . . , 𝑒𝑛} right? So this guy gives you 𝑈, all of 

these give you 𝑈⊥, okay? So when you write 𝑣 as < 𝑣, 𝑒1 > 𝑒1  + ⋯ this is the projection 𝑢, this 

part is the 𝑢⊥, okay? So when you project, what do you do? You write 𝑣 as something that belongs 

to 𝑈 plus something that belongs to 𝑈⊥, okay? All that belongs to 𝑈⊥. You can throw away, only 

this you keep, okay? And that you can see is the same as this, right? So what is this? This will 

work out as, so 𝑃𝑈(𝑣) it’ll work out as < 𝑣, 𝑥/||𝑥| > times 𝑒1 again which is 𝑥/||𝑥||. And you can 

see that is the same as this, right? So 
1

||𝑥||
  will come out. So you will get < 𝑣, 𝑥 >

𝑥

||𝑥||
2, okay? So 

this is how you do projection onto a one dimensional subspace, okay? So it just works exactly by 

that basis extension argument. 
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So you can also do, for a two dimensional subspace you take linearly independent 𝑥 and 𝑦 and 

then define 𝑢 as the span(𝑥, 𝑦). You do orthonormal basis. This is just Gram-Schmidt, right? So 

this is just the Gram-Schmidt followed on two, Gram-Schmidt done on two vectors. You know 



how to do this. So 𝑃𝑈(𝑣). I am missing the 𝑣 again, apologies for that, okay? Okay? So 𝑃𝑈(𝑣) is 

simply < 𝑣, 𝑒1 > 𝑒1 + < 𝑣, 𝑒2 > 𝑒2, right? So that's it. So in this case, this is the same as the span 

of {𝑒1, 𝑒2} and simply the projection on 𝑣 is simply < 𝑣, 𝑒1 > 𝑒1 + < 𝑣, 𝑒2 > 𝑒2, okay? So it is 

easy enough to see. So you find an orthonormal basis, any orthonormal basis that you want for 

your subspace 𝑈 and simply do this formula 𝑣 comma each of these things times the basis. That 

gives you the orthogonal projection of a vector 𝑣 onto the subspace 𝑈, okay? And it does not matter 

what subspace you pick, what basis you pick here. Any orthonormal basis you pick, you will get 

the same projection operator 𝑃𝑈, okay? So that is something that we saw. So let us look at matrices 

for the projection operator, okay? So we see that projection is a linear operation and we have an 

operator for it. We have sort of a description for it in terms of inner product, that's not too bad, it's 

pretty good.  
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But let's see if we can get a matrix, right? So for that I'll specialize to this simple example of 𝑉 

being ℝ𝑛. I look at dot product as the inner product and the standard basis as the basis of choice, 

okay? So let's do all this. And here is a 𝑈, I have taken the vector space 𝑈 to be a one dimensional 

subspace, okay? So this whole thing is a vector. Do not think of this as 𝑛 vectors, this whole thing 

is one vector, okay? Just one vector 𝑥, okay? So think of it as one vector 𝑥, okay? And I know my 

projection operator acting on 𝑣, once again sorry about that... I am missing this 𝑃𝑈(𝑣) here. Is 

simply < 𝑣, 𝑥 >
𝑥

||𝑥||
2, okay? So that would be, I can rewrite this, right? See, notice this. See in ℝ𝑛 

for instance, < 𝑣, 𝑥 > you can write in matrix form. If you have the, you know, coordinate 

expansions, you can write it as 𝑥𝑇𝑣. You can also write it as 𝑣𝑇𝑥. Both of these are the same, 



okay? So this is something that I didn't maybe emphasize too much when we discuss inner product. 

In ℝ𝑛 where the inner product is simply, you know, the dot product, < 𝑣, 𝑥 > inner product is the 

same as 𝑥𝑇𝑣. You can also write it as 𝑣𝑇𝑥, both of these are the same, okay? Important to 

understand this. So once I know this, this inner product < 𝑣, 𝑥 > I can write it as 𝑥𝑇𝑣, okay? So 

there is a reason why I am writing it as 𝑥𝑇𝑣. If you write it as 𝑣𝑇𝑥, 𝑥 it will not work out quite so 

nicely. So this is 𝑥(𝑥𝑇𝑣). I can write this as, right, so this is all scalars now, so I can push it to this 

side if I want. So I simply get that 𝑥(𝑥𝑇𝑣) is the same as (𝑥𝑥𝑇)𝑣, okay? See, remember, 𝑥 is a 

column vector. I am thinking of 𝑥 as a column vector. So 𝑥𝑇 will become a row vector and 𝑣 also 

is a column vector, okay? So (𝑥𝑥𝑇) will be a matrix, 𝑛 × 𝑛 matrix. And then 𝑣 will multiply on 

the right, okay? So this 𝑃𝑈 which is the operator can be identified now with 
1

‖𝑥‖2  (𝑥𝑥𝑇) isn’t it? So 

this is the crucial thing. This is a matrix of a projection operator, okay? So it will look like this, 

okay? You can see it is quite simple. It’s (𝑥𝑥𝑇), it is a rank one 𝑛 × 𝑛 matrix, okay? Then 

multiplied by 
1

||𝑥||
2. So this becomes the projection operator.  
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So you can generalize this. It’s not very difficult to generalize this. So you find an orthonormal 

basis for your subspace 𝑈 onto which you want to project, okay? And then if you want to do 𝑃𝑈(𝑣), 

I am getting this in every single slide here, if you want to do 𝑃𝑈(𝑣), should do it here also, okay, 

that will be simply < 𝑣, 𝑒1 > 𝑒1, so on, okay? So this we know. You can pick any orthonormal 

basis that you like for 𝑈 and 𝑃𝑈(𝑣)  simply becomes this. So now every < 𝑣, 𝑒1 > I can write as 

𝑒1
𝑇𝑣, okay? And then if you do that, you can pull the 𝑣 common outside and you will simply get 



(𝑒1𝑒1
𝑇  + ⋯ +  𝑒𝑚𝑒𝑚

𝑇 )𝑣, okay? And you identify this 𝑃𝑈 with this matrix that you got. (𝑒1𝑒1
𝑇  +

⋯ +  𝑒𝑚𝑒𝑚
𝑇 ), okay? So this is your 𝑛 × 𝑛 matrix which represents projection onto the subspace 𝑈 

which is spanned by an orthonormal basis 𝑒1 through 𝑒𝑚. So you see how this is coming through. 

So this probably gives you a good idea. You don't need the 
1

||𝑥||
2 because, you know, all these 𝑒𝑖s 

are already orthonormal, so they don't enter the picture. So it just becomes something like... So 

projection onto a subspace, when you have an orthonormal basis, finding the matrix is very easy, 

okay? You can repeat it quite easily for the complex case also, right? So instead of, you know, 

being 𝑥𝑇𝑣, it will be, you know, 𝑥̅𝑇𝑣 or something like that. And then that would, so instead of 

𝑒1𝑒1
𝑇 it will be, you know. 𝑒1̅

𝑇𝑒1
𝑇 or something like that. So you should take the conjugate in one 

of these things and you will get what you want. Is that okay? So finding the matrix for the 

projection operator is also very easy, okay? So you have to get familiar with projection. It seems 

like a very easy thing to think of. It's not very complicated. But we will use some of these properties 

in some non-trivial way going forward, okay?  
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So here are some properties, quick properties one can very easily derive from the definitions I 

made so far. Supposing you start with a finite dimensional subspace of 𝑉 and 𝑣 is some vector in 

the vector space, okay? Here are a few properties, quick properties you can easily write down. If 

the projection operator operates on a vector that's already inside 𝑈, you will not get anything 

different. In fact you will get exactly 𝑢. So inside the subspace 𝑈, the projection operator is 

identity, okay? So that's nice to know. Outside what does it do? It makes it zero, okay? As an 

outside, meaning in the complement it makes it zero. And there are also many various vectors 



which are outside 𝑈 and which are not in the complement also, right? So you will have 𝑢 + u⊥, 

then something else interesting would happen, okay? So, but this is the story as far as how the 

projection operator, if you restrict it to either 𝑈 or U⊥, how does it behave, okay? On 𝑢 it becomes 

identity, on u⊥ it becomes zero, okay? So that's, it sort of correlates with this description I have for 

the matrix, okay? If you think about what this matrix is, you will see that correlates very well, 

okay? Range of 𝑃𝑈 is 𝑈 itself. Null space of 𝑃𝑈 is U⊥, okay? These are all easy consequences. And 

if you do 𝑣 −  𝑃𝑈(𝑣), you get something which is in U⊥, right? So that is also very clear from the 

way we defined how orthogonal projection works. If you do 𝑣 − 𝑃𝑈(𝑣), that belongs to U⊥, okay? 

And if you do 𝑃𝑈
2, you get 𝑃𝑈 itself, okay? So whatever vector you have, you know, if you square 

it you get the same thing as 𝑃𝑈, okay? So just think about it. If you repeatedly apply projection, 

you apply projection once, you got to some point that's already inside 𝑈. If you apply projection 

again, it's not going to change, it remains the same. So it's enough if you apply it once, right? So 

it's sort of, 𝑃𝑈
2 is a strange matrix or strange operator. You can't repeat it. The second time you 

repeat, it doesn't do anything new. It just gives you the same thing, okay? And here's an interesting 

result that norm of 𝑃𝑈(𝑣), the norm of the projection is lesser than the original vector. So you lose 

some magnitude when you project to a smaller subspace.  
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And there are proofs for all of this. And this one is a direct consequence of the Pythagorean 

identity, right? So 𝑣 splits into its projection on 𝑢 plus something which is orthogonal to that, 

okay? So when you have two orthogonal things adding to give you a vector, the norm is the sum 

of those two. So since you are losing something definite, you will get the norm for the projection 



being lesser than this, okay? So these are all properties. So projection is an interesting operation 

that you do on a vector. You can project onto a subspace of your choice. Orthonormal basis plays 

a big role in the projection and projection is a very interesting operator in the sense you do it, once 

you go to the subspace and after that it doesn't much happen to it, nothing much happens to it after 

that. And you lose something when you project, right? So the difference between the original 

vector and the projection is orthogonal to the projection, projected guy, okay? So this is something 

interesting. So in fact you can rephrase this a little bit also. See, 𝑣 − 𝑃𝑈(𝑣) is orthogonal to 𝑃𝑈(𝑣). 

Is that okay? So this is a good result to have. Because this belongs to U⊥. This belongs to 𝑈, okay? 

So there's a part of 𝑣 which sort of, you're splitting 𝑣 into two. One which is in 𝑈, one which is in 

U⊥. And the difference is orthogonal, okay? So this is something important. We will take advantage 

of this later, okay?  

Projection is important because it solves a very important and interesting minimization problem 

involving subspaces and norms and distances and all that. So we will take this up in the next 

lecture, okay? Thank you. 


