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Hello and welcome to this lecture. We're going to deal with two topics in this lecture. These are 

closely associated with inner products and they, you know, sort of tie up with subspaces and all 

these other things that we've been studying so far. So these are, one is linear functional. It's actually 

a special case of a linear map and it has a very interesting and simple connection to inner products. 

So that's something that we will see. And the other one is orthogonal complements. Once again, 

you might be familiar from what you studied earlier about this in description of planes in ℝ3, right? 

So you can describe a plane either by providing two vectors on that plane, or you can provide a 

vector that is normal to the plane, right? So this normal description of a plane is something that 

you might have studied. So orthogonal complement is sort of related to that. So what is this 

orthogonal complement? And inner product of course plays a big role in that as well. So these two 

we’ll study in this lecture, okay? So let us get started.  
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Quick recap. We have been looking as usual at vector spaces over scalar field. Real or complex. 

We saw, we've seen matrices are very useful to represent these linear maps and work with them. 

There’s these nice results about dimension of null and range and four fundamental subspaces and 

their relationship, how they are useful in solving linear equations, this whole, you know, invariant 

subspace, one dimensional invariant subspace leading to the definition of eigenvalues, 

eigenvectors and how, you know, you can have an upper triangular matrix representation in a 

suitable basis for any linear map. That's something we've seen. We also saw that some linear maps 

are diagonal. So that's also something that's very interesting. And the latest topic we are studying 

this week is inner products and norms and how orthogonality and orthonormal basis simplify a lot 

of descriptions and we'll continue on in that mode today. So we'll see, inner product, orthogonality, 

helps us in simplifying some of the notions and connections between these four fundamental 

subspaces and linear maps and all that, okay? And we saw one very nice result that in fact in an 

inner product space, when you have a proper inner product defined in the vector space, you can 

have an orthonormal basis with respect to which any linear map... Okay I should say it in reverse. 

For any linear map, there exists an orthonormal basis such that the matrix representing that linear 

map in that basis becomes upper triangular. So that is very nice to know. It is good to have 

orthonormal bases because we know coordinates are easy to find and all that, okay? So that's a 

quick recap. Let's study now two topics in this lecture. Linear functionals and orthogonal 

complements which further illustrate the usefulness of having this inner product, okay?  

What are linear functionals? A linear functional is a linear map, except that the, where the result 

of the linear functional is always a scalar, okay? So it maps vector to scalar. That's called a 

functional, okay? A functional is usually like that. You have a vector or a more complicated object. 

From that if you do a function and you take yourself to a scalar, a very simple object, usually 

people call it a functional. So linear functional is nothing but a linear map except that from 𝑉 you 

go to 𝔽 the scalar field itself, right? So that is called a linear functional. So all the properties we 

studied for linear maps apply for linear functionals as well, right? Except that, you know, the range 

is actually a scalar. So it's got dimension one or zero. So it's very simple in some sense. So maybe 

we can expect a simple description, okay? So let's look at a few examples to get ourselves started. 

So if you look at linear map 𝜙, so this is, it's common to use a notation like 𝜙 as opposed to 𝑇 for 

a linear functional. If you look at ℝ3 to ℝ, here is an example of a linear functional. You can see 

it's a linear map. It works out in some obvious way. So, in fact, in general if you go from 𝔽𝑛 → 𝔽, 

any linear map would be like 𝑐1𝑥1 to 𝑐𝑛𝑥𝑛. It's very easy to see, you know, linear maps correspond 

to matrices. The matrix of a linear functional is going to be a 1 × 𝑛 matrix, right? So if you go 

from 𝔽𝑛 → 𝔽, the matrix is a 1 × 𝑛 matrix. So clearly the map itself is represented by something 

like this, right? So it has to be like that, okay? All linear functions will be in this form. It is quite 

easy to see. But maybe potentially, if you look at a slightly different type of linear functional which 

takes, say polynomials of degree less than or equal to two to the real line, okay, so here is a very 

interesting little definition where we use this integration, right? So we use, you take a polynomial 

of degree less than or equal to 2, and then you do ∫ 𝑝(𝑥)𝑐𝑜𝑠(𝜋𝑥) 𝑑𝑥
1

0
  .Now this 𝑐𝑜𝑠(𝜋𝑥) is not a 



polynomial, right? It seems to be some other object. But overall this 𝜙 is still a linear functional, 

right? You can use any definition, the definition for the linear map. You see the additivity works 

because integration is also linear and scalar multiplication also works, right? But this 𝑐𝑜𝑠(𝜋𝑥) is 

a bit disturbing, right? It's not something that's part of my linear algebra, the field or the vector 

space that I'm dealing with here. It seems like something else. But nevertheless the overall 𝜙 is a 

linear map. So can I say something in this case?  
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So is it still that, is there still a simple description in terms of my own vector space even if the 

function involved is 𝑐𝑜𝑠 or something else which is outside, okay? So things like this can happen 

sometimes. You may get a linear map from a vector space to the scalar field but it may involve 

things outside of your vector space, okay? So something else may happen and may look very 

strange and different to you. But I am still in this vector space, right? So something simple must 

be there for describing such things. And it turns out that's also true. And once you have an inner 

product space, such things can be very, very clearly written down, okay? So here is a, so if your 𝑉 

is not just a vector space, it's an inner product space, there's a very interesting example of a linear 

functional. It's a very simple linear functional. I have spoken about this when I introduced inner 

product as something that connects in a product to the world of linear maps and linear algebra, 

right? So if you fix a particular vector 𝑢 and define a 𝜙 as the inner product < 𝑣, 𝑢 >, then you 

have a linear functional, right? So it is quite easy to see. All the properties can be verified directly. 

So this is a linear functional. It's a very interesting linear functional. The reason is, we can ask a 

very interesting question: can there be in an inner product space any other linear functional which 



is not like this, right? So this looks like a very typical or easy example of a linear functional. Can 

there be a linear functional which is not like this, right? So that is an interesting question one can 

ask.  
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And it turns out there is this wonderful result which is called Riesz’ representation theorem. Riesz 

representation theorem as it's called. If you have a finite dimensional inner product space and if 

somebody gives you a linear functional on 𝑉, it could be whatever linear functional, it could 

involve the elements of your inner product space or maybe some other element like the previous 

example we saw, whatever, just as long as it's a linear functional, it turns out there exists a unique 

vector in your 𝑉, in your own, the inner product space that you started with such that that linear 

functional becomes the inner product < 𝑣, 𝑢 >, okay? So in other words, this inner product <

𝑣, 𝑢 > is the only linear functional that's interesting in a finite dimensional inner product space. 

So that's the Riesz representation theorem. It's probably intuitive. It's very easy to see. But let's 

write down a proof. The proof involves orthonormality and the properties of inner product and all 

that, okay? So you start with an orthonormal basis for 𝑉, okay? And then you see 𝜙(𝑣), right? 

Now once you have an orthonormal basis, any vector 𝑣 ∈ 𝑉 can be written as < 𝑣, 𝑒1 > 𝑒1  +

 … + < 𝑣, 𝑒𝑛 > 𝑒𝑛, right? So this is true. So this is orthonormal. So you can write like this. So this 

is what I have done here. So instead of 𝑣, you plug in this guy 𝑣 equals this, right? So instead of 

𝑣, you put that in. Now you use the property of the linear functional, right? So 𝜙 is going to sort 

of go inside the linear combination. < 𝑣, 𝑒1 > is a scalar, 𝑒1 is the vector. So 𝜙 will just apply on 

that 𝑒1, the scalar will come out, right? So this is a linear map, so it's under linear combinations, 



the 𝜙 will go in, right? So you have 𝜙(𝑒1), … , 𝜙(𝑒𝑛). Now notice this 𝜙(𝑒𝑖) is a scalar, okay? 

Okay? In general complex, okay? It could be, if it is real, it’s real. But otherwise it’s complex, 

right? So it’s a scalar. Now what happens when an inner product multiplies, is multiplied by scalar? 

That scalar can be taken inside, right? It could be taken inside either to the first argument in which 

case it would just enter in without anything else or it could be taken inside into the second argument 

in which case it would be conjugated, okay? So I forgot to put the bracket here. So this is important, 

okay? So I am taking it into the second argument, there’s a reason why I think the second argument 

is interesting here. So I am taking it into the second argument. So I have to conjugate, right? So I 

am putting a conjugate there, right? So this is so far so good. So you see how the, you know, 

orthogonality and the inner product are nicely playing to convert any linear map into an inner 

product like situation, okay? So there is a bug here. I apologize for that. This is actually, okay, so 

let me just write it properly. You should have a < 𝑣, 𝜙(𝑒𝑛)̅̅ ̅̅ ̅̅ ̅̅ > 𝑒𝑛 here, right? So you can see how 

the same thing has been written here. And then I can combine all these guys, right? So that's what's 

been done I think in the way I wrote it. So this is for each term, the 𝜙 goes in and then I sum up 

all the remaining guys, right? So when I do that, I get that, okay? So you can see that that works 

out quite okay. So hopefully you see that it's quite clear I think, okay? So that becomes the whole 

thing.  
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So then once you do that, you use the additivity in the second argument. So this becomes inner 

product of 𝑣 comma this, okay? So I just showed you the intermediate step there. Each term 𝜙 

goes in and becomes conjugate. And then you add up all of those. 𝑣 is the same, so the second one 



becomes additive. So if you put 𝑢 as this guy, right, whatever the second one is, 𝜙(𝑒1)̅̅ ̅̅ ̅̅ ̅̅ 𝑒1 + … ) 

then 𝜙(𝑣) becomes < 𝑣, 𝑢 >, okay? So somebody gives you some linear functional 𝜙(𝑣), you can 

always go in and find the 𝑢 such that that 𝜙(𝑣) becomes inner product < 𝑣, 𝑢 >, okay? So that is 

interesting. So this statement also makes something about uniqueness of this vector 𝑢. I will leave 

that as an exercise. Go ahead and try and show it. The book also has the proof for uniqueness. 

Usually uniqueness is always done by contradiction. You assume, you know, there are two 

different vectors 𝑢1 and 𝑢2 and then show finally that 𝑢1 has to be equal to 𝑢2. It’s quite easy in 

this case. You can do that, okay? So this is reassuring to know. So any linear functional in an inner 

product space which is finite dimensional you will have only the inner product showing up. You 

can always find the u so that this will happen, okay?  

(Refer Slide Time: 14:28) 

 

So let us go and use it in our example that we had here. We had polynomials of degree less than 

or equal to 2 and we use this inner product < 𝑝, 𝑞 > is ∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥
1

0
 and let us say we look at 

this linear functional which is defined with respect to this 𝑐𝑜𝑠(𝜋𝑥) showing up. This example is 

done in your book as well, you can take a look. But let me just quickly illustrate what is going on. 

So what does the Riesz tell you? Riesz tells you there exists a 𝑞(𝑥) which is a vector in your space. 

What are vectors in my space? These are polynomials of degree less than or equal to 2. There 

exists something such that this 𝜙(𝑥) which is ∫ 𝑝(𝑥)𝑐𝑜𝑠(𝜋𝑥)𝑑𝑥
1

0
 has to be actually equal to 

∫ 𝑝(𝑥)𝑞(𝑥)𝑑𝑥
1

0
. So this is the main Riesz result. Now the question is: how do you find this 𝑞(𝑥)? 

You use the elements from the proof. So you fix a, first find an orthonormal basis for this 𝑃2(ℝ). 



This needs a little bit of work. For instance, you could take {1, 𝑥, 𝑥2} which is an obvious basis 

and run Gram-Schmidt on it. Once you run Gram-Schmidt method, you will get {𝑒0, 𝑒1, 𝑒2}. 𝑒0 

will be 1 itself. 𝑒1 will be a slightly modified version of 𝑥 and 1. And then you will have 𝑥2, okay? 

So this can be done. You can find an orthonormal basis. Once you find an orthonormal basis, 𝑞(𝑥) 

is simply, you know, just from the proof before. 𝜙 applied on the orthonormal basis. So that will 

involve an integration, right? With 𝑥𝑐𝑜𝑠(𝑥), 𝑥2𝑐𝑜𝑠(𝑥), like that. And then 𝑒0 itself. You evaluate 

this polynomial, you will get 𝑞, okay? So this is the basic idea. I am not doing it in great detail. 

Your book has the details here if you want to see it. And that's true, okay? So this is a nice result 

to see, right? So ∫ 𝑝(𝑥)𝑐𝑜𝑠(𝜋𝑥)𝑑𝑥
1

0
 which is really not a polynomial is actually the same as 

∫ 𝑝(𝑥)
1

0
(a polynomial of degree two). In this case it will be equal to two as well, okay? So that's 

the example worked out. And that's a summary of linear functionals. It's this, I don't want to say 

too much more about linear functionals. There's nothing more to say, right? Once you have the 

Riesz representation theorem, it is simply the inner product, okay? So all these inner products 

together make linear functionals. We'll come back and look at these things later on when we talk 

about adjoints and those definitions. This will be very interesting to look at as well, okay? Good.  

So let us move on to the next topic of this lecture which is orthogonal complement, okay? So it is 

very interesting to see how, you know, orthogonality and inner products can be used to define 

interesting subspaces of a vector space, okay? So we have a vector space 𝑉 which is an inner 

product space, okay? And we consider a subset of that vector space which is some 𝑈. I'll show you 

a simple example. 𝑈 could be a point. You could be a set of points, you could be a subspace itself, 

you could be the entire 𝑉, okay? So any subset. The orthogonal complement of 𝑈 we will denote 

it as 𝑈⊥. This perpendicular symbol is usually abbreviated and pronounced as perp. So this is 𝑈⊥, 

is the set of vectors which is orthogonal to every vector in the subset 𝑈, okay? So that's the 

definition. It's written down in set theoretic notation below. 𝑈⊥ is the set of all 𝑣 in the vector 

space 𝑉 such that the inner product < 𝑣, 𝑢 > =  0 for every 𝑢 ∈ 𝑈, okay? So for everything it has 

to be true, not just any one, okay? So that's important. That’s the definition. It’s easy enough to 

see the definition. So let’s see a few examples and we’ll use our familiar ℝ2. First is 𝑢 = 0, okay? 

Supposing I take only the 0 vector in ℝ2. What would be 𝑈⊥, okay? So I'll go through and write 

down all the four and then explain how this would go, okay? So you can see for 𝑢 =  0, it's quite 

easy to see. 𝑈⊥, any vector is going to be orthogonal to 0, right? So 𝑈⊥ would be the entire vector 

space. What if 𝑢 is (𝑥1, 𝑦1) where maybe (𝑥1, 𝑦1) is not 0, right? So what if 𝑢 is (𝑥1, 𝑦1), what 

would be 𝑈⊥, okay? So if you think about it, you're going to write 𝑈⊥ as the set of all 𝑣 equals, 

let's say (𝑥, 𝑦), such that the inner product < 𝑣, 𝑢 >... So 𝑢 is just one point, right? So this is for 

every 𝑢. But there's only one point in 𝑈. So this would be 𝑥𝑥1  +  𝑦𝑦1  =  0, okay? What is this? 

What is this description? This is a line through the origin, isn't it? This is a line through origin and 

it is perpendicular to the line joining (𝑥1, 𝑦1). So if you were to draw, you know, this point, and 

you have let us say (𝑥1, 𝑦1) here. 𝑈⊥ is, you draw this line through this, then 𝑈⊥ would be the 

perpendicular line, okay? So this would be 90 degrees and this guy would be 𝑈⊥, isn't it? So that's 



nice enough to see, okay? So you take one point and ask which is the set of all, one vector and ask 

which is the set of all vectors which is orthogonal, they will lie on the perpendicular line. It's easy 

to see. What if 𝑈 itself is a line through the origin? The same example extends, right? So this dotted 

line would be a line through the origin. Then 𝑈 𝑝𝑒𝑟𝑝 would again be a vector which is 

perpendicular to it, right? So, because the line through the origin, there is only really one vector in 

it, right? It’s one dimensional. So there is nothing more to worry about. So you just make sure it’s 

perpendicular to that, it will be perpendicular to the whole thing, okay? 
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So what if you take two points, okay? So here there are two cases. These two points could lie on a 

line through the origin. If they lie on a line through the origin, the same line through the origin, 

then 𝑈⊥ will be the line perpendicular to it. But in case they don't, in case (𝑥1, 𝑦1), (𝑥2, 𝑦2) are 

linearly independent, then what will happen? So if linearly independent, then 𝑈⊥ is only zero, 

right? So there is nothing else that will be orthogonal to both this and this, right? So think about 

why that is true. So if you have, there cannot be one vector which is orthogonal to both of these 

guys. So that would be, you know, you can write it down. So supposing you say (𝑥1, 𝑦1), (𝑥2, 𝑦2). 

𝑈⊥ is the set of all (𝑥, 𝑦) such that this is zero, isn't it? So you can write like this, okay? So this is 

a good way of capturing what happens here, right? So (𝑥, 𝑦) has to be orthogonal to (𝑥1, 𝑦1). (𝑥, 𝑦) 

also needs to be orthogonal to (𝑥2, 𝑦2), okay? So this is a nice way of writing it. So this trick of 

writing it in terms of, you know, the points that you want and the equation that you want, if you 

go to two points it will be like this... So now everything depends on the rank of [𝑥1 𝑦1;  𝑥2 𝑦2]. If 

this is actually linearly dependent, then you can have a line. If this is like all zero, then you will 



have the whole 𝑉. If it is linearly independent then 𝑈⊥ will be zero. There is no non-zero (𝑥, 𝑦) 

which will be in the 𝑈⊥, okay? So you see lots of interesting connections are establishing, getting 

established between equations and subspaces and all that and orthogonal complements. Already 

it's beginning to look interesting. So you can see here, these connections to null space here. All of 

that we'll explore and sort of formalize in the next few slides, okay? So 𝑈 =  𝑉 is another example. 

So if 𝑈 =  𝑉, then 𝑈⊥ is just the zero, nothing else is there, okay?  
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Okay. So let's see a quick few basic properties. If 𝑈 is a subset of 𝑉, the first result is 𝑈⊥ is a 

subspace of 𝑉, okay? So all the examples we saw before, you saw that whatever 𝑈 was, the 𝑈⊥ 

ended up being a subspace, okay? So that's not too difficult to prove. I'll leave the proof as an 

exercise. You can check that, you know, the points of U perp are closed under linear combination, 

it's quite easy to see, right? So if any vector has to be orthogonal to all the points in 𝑈, if you take 

a linear combination, that's still going to be orthogonal to all the points in 𝑈, okay? There's no 

problem there. And zero perp is going to be 𝑉. 𝑉⊥ is going to be zero, okay? And next is the 

interesting little result. The third point I think is very interesting. So 𝑈 ∩ 𝑈⊥ has to be either empty 

or it has to be zero, okay? So you can see why? So for instance in some of the cases we saw 𝑈 was 

(𝑥1, 𝑦1). And if (𝑥1, 𝑦1) is not 0 and 𝑈⊥ was a subspace, there can be no real intersection, right? 

So that point is maybe easy to see. If you see, if 𝑣 belongs to 𝑈 ∩ 𝑈⊥, okay? So if 𝑈 ∩ 𝑈⊥ is empty, 

then there is nothing to do, okay? If there is a 𝑣 that belongs to it, then what should happen, right? 

𝑣 ∈ 𝑈 and 𝑣 ∈ 𝑈⊥ also. So 𝑣 should be orthogonal to 𝑣 itself which implies 𝑣 = 0, okay? So if 

there is any vector in 𝑈 ∩ 𝑈⊥, it has to be zero or there could be no vector at all in which case it 



will be empty, okay? So these are the only two possibilities for 𝑈 ∩ 𝑈⊥. Particularly interesting 

cases, you know? If 𝑈 is a subspace then 𝑈 will have zero also and 𝑈 ∩ 𝑈⊥ will be zero. If 𝑈 is 

not a subspace, then... 𝑈 should have zero, right? That's the only criteria. If 𝑈 has 0, then 𝑈 ∩ 𝑈⊥ 

will be 0. If 𝑈 does not have 0 then it will be empty, okay? So that's a nice result to have. Another 

result which you can quickly show is: if 𝑈 is contained in 𝑊, if 𝑊 is a superset of 𝑈, then the, you 

know, the orthogonal complement of 𝑊⊥ will contain 𝑈, right? See if 𝑈 is contained, something 

that belongs to 𝑊⊥, right, will also be perpendicular to every point in 𝑈, right? So it should be 

contained in 𝑈⊥. So the containment in the orthogonal complement will be reverse of the 

containment here. If 𝑈 is a smaller set, 𝑈⊥ will be a larger set, okay? So 𝑈 is contained in 𝑊. 𝑈⊥ 

will contain 𝑊⊥, okay? So it will go reverse because the conditions are working that way, okay? 

Some basic properties, some basic intuition to build up on orthogonal complements. 
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Okay. The next actual interesting case is when 𝑈 becomes a subspace itself, right? So far when we 

looked at 𝑈, you kept 𝑈 as a subset, you got some interesting properties. When 𝑈 becomes a 

subspace itself, then it becomes much more interesting, okay? So lots of interesting connections 

you can make between the subspaces that we know of and the complement, okay? So let us say 𝑈 

is a subspace of ℝ𝑛 or ℂ𝑛. I am taking a specific type of 𝔽𝑛, the usual coordinate vector space to 

see what we can say, okay? So let, in this case we will take an example where 𝑈 is the span of 

these two, right? This is how we specify subspaces, right? We specify the basis or a spanning set, 

okay? Here is a spanning set. So one could write this in terms of rows of a matrix 𝐴 or columns. I 

mean, if you do not like rows, you can write columns as well. I am writing it down in rows. There 



is a specific reason why, okay? So 𝑈 becomes the row space of 𝐴 and 𝐴 is this, okay? So you can 

see this nice connection comes about. Any subspace I can do this, right? So what is 𝑈⊥ now? The 

set of all vectors in ℝ4 such that the inner product of 𝑣 and (1, 2, 3, 4) is zero. Inner product of 𝑣 

and (3, 4, 5, 6) is zero. These two you can combine just like that I did before in the previous 

example and write it's the set of all 𝑣. So now notice. See, remember, since 𝑈 is a subspace, it's 

enough if I check orthogonality of 𝑣 with the two spanning set vectors. If 𝑣 is orthogonal to each 

of the spanning set vectors, then 𝑣 will be orthogonal to any linear combination of them, so I don't 

have to go and check for orthogonality with every point of 𝑈, it's enough if you check for 

orthogonality with the spanning set of 𝑈. So that is a big simplification when 𝑈 becomes a 

subspace. So 𝑈⊥ simply becomes just this definition and this can be rewritten, right? So this inner 

product 𝑣 comma this you can write it as 𝐴𝑣 =  0. So this is like a shorthand notation and you 

quickly see the connection to the null space, right? So 𝑈⊥ when 𝑈 is the row space of 𝐴 is nothing 

but the null of 𝐴, okay? So this is a good connection for ℝ𝑛, right? So this is ℝ𝑛, okay? So this is 

in ℝ𝑛, I should say that very clearly. This is for ℝ𝑛, okay? Remember that.  
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Now if 𝑈 is a subspace of ℂ𝑛 where you expect complex numbers and you write 𝑈 as row space 

of 𝐴, so the problem in complex is: In complex, okay... So this is for ℝ𝑛 where inner product <

𝑥, 𝑦 > is defined as 𝑥1𝑦1  +  … + 𝑥𝑛𝑦𝑛. In complex, what are you going to do? In inner product 

we’ll have this other definition, right? So 𝑥1𝑦1̅̅ ̅  +  … +  𝑥𝑛𝑦𝑛̅̅ ̅, okay? So this conjugate enters the 

picture here, right? So if you define 𝐴 and make 𝑈 as the row space of 𝐴, 𝑈⊥ in this case will 

become null of (𝐴̅), okay? So what is 𝐴̅? You take conjugate of 𝐴, okay? So instead of putting 𝐴, 



you have to put 𝐴̅, okay? So what will happen now? If you have 𝐴̅𝑣 =  0, okay, so that is the same 

as 𝐴𝑣̅ = 0 and that will give you the inner product, right? So the proper inner product will come 

in, right? So in complex also there is a connection with the null space except that you will do an 

element wise conjugate, okay? So we see that this complement and the four fundamental spaces 

of matrices are connected and one can write it down. Particularly for the real case, real case is very 

easy where you have the inner product, null of 𝐴 is the row space of 𝐴⊥ and you can also have for 

range, right? So you define the left null and range will be the orthogonal complement of left null, 

okay? So this is a good result to see. So we see this nice connection. And what you were doing 

when you found null space is actually finding the orthogonal complement of the row space, okay? 

So this is very useful in some cases.  
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So there are few more results which are very, very interesting. Here is the first of them. So we 

know that if you have a subspace 𝑈, there is some 𝑊 such that 𝑉 becomes the direct sum of 𝑈 and 

𝑊. We know that that's true, okay? So it turns out 𝑈⊥ is a candidate for 𝑊, okay? So you have a 

sub, you have an inner product space 𝑉, you have a subspace 𝑈. You find 𝑈⊥, then 𝑉 becomes the 

direct sum of 𝑈 and 𝑈⊥. Why direct sum makes sense? We know already 𝑈 ∩ 𝑈⊥ has to be only 

0, right? So that we know. So if I take a sum, it will become direct sum. That's okay. But then why 

should the direct sum be equal to 𝑉? That is the question. And this is a proof that you can write. 

It’s a very easy argument. You start now with an orthonormal basis for 𝑈, that's where the starting 

point lies. Not just a basis but an orthonormal basis for 𝑈. Because we are in an inner product 

space. Any v now I can write in this fashion, okay? So it's sort of like the orthogonal decomposition 



we saw before. You know 𝑣, any 𝑣... Now 𝑣 need not be in 𝑈. If 𝑣 were to be in 𝑈 then only this 

first part will come, second part won't come. So when it is general, I sort of do the first part, okay? 

And then write everything as 𝑣 minus that, okay? It's just 𝑣 equals 𝑣 written like this, right? So 

nothing major here going on. But interestingly the first term ends up being in 𝑈, okay? And the 

second term ends up being in 𝑈⊥, okay? I'll ask you to prove this. It's not very hard. You can show 

for the second term, if you take a dot product of the second term with 𝑒1 for instance, what will 

happen? The first term will give you < 𝑣, 𝑒1 >. This term will give you −< 𝑣, 𝑒1 >, right? When 

you are taking dot product with 𝑒1, all the other guys will disappear because they are all, it's an 

orthonormal basis, right? So you get < 𝑣, 𝑒1 >  − < 𝑣, 𝑒1 > and that will go to 0, okay? So this is 

a bit interesting. This is sort of like an orthogonal decomposition of 𝑣 with respect to 𝑈 and this is 

possible for any subspace U.  
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So this part is very important and interesting. We’ll come back to it in later lectures. This 

orthonormal basis is very powerful in this fashion. For any subspace, even if you have a vector 

outside the subspace, you can sort of write it as something that belongs to the subspace plus 

something that is orthogonal to the subspace, okay? So you can sort of picture this. You have 𝑈, 

you have the whole 𝑉. If you have a 𝑣 outside of that, you know you can, there is something here. 

And then something that is perpendicular, right? And this is this guy. And this guy is in... Right? 

So let me just write 𝑈⊥ like this. This is 𝑈⊥ and this belongs to 𝑈, okay? So any 𝑉 that is true. So 

there is something that is here, something that is here. And this plus this would give you 𝑣, okay? 

So you can write down a proof of it. So this is very important to know, okay? So and that's it, we 



are done, right? So any 𝑣 can be written as something that belongs to 𝑈 and something that belongs 

to 𝑈⊥. So, you know 𝑉 is 𝑈 ⊕ 𝑈⊥, okay? So that's nice to know. So orthogonal complement also 

has this powerful thing that it has a direct sum with 𝑈 to give you the entire vector space, okay? 

So if you, I mean one can quickly write a corollary here. If 𝑉 is finite dimensional, this result 

immediately tells you the dimension of 𝑈⊥. It is simply, you know, dim 𝑉 − dim 𝑈. You could 

have also proved it using other methods. But anyway. So this is quite easy to see. Okay. There's 

another interesting result. When 𝑈 is a subspace, you take 𝑈⊥, right? 𝑈⊥ will also be a subspace, 

right? If you 𝑈 is a subspace, when, whatever 𝑈, even if 𝑈 is a subset, 𝑈⊥ is a subspace. And then 

you can do a perp again. It turns out if 𝑈 is a subspace, you will get back 𝑈, okay? This if, when 

you do complement twice, orthogonal complement of the orthogonal complement gets back to the 

original subspace, okay? I'm not going to go through the proof. It's a bit technical, it's just showing 

two sets are equal. An element here is element there. Except that you have to really watch out for 

what it means to say, you know, perp of perp and then look at it very carefully. It's, the proof in 

your book is pretty nice, please take a look at it. I'm not going to repeat it in this class. But this is 

interesting to know, okay?  
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So how do you find an orthonormal basis for 𝑈⊥? Is there an easy method? Yeah, you can use 

extension. The orthonormal basis extension, you find an orthonormal basis for 𝑈, you extend to 

an orthonormal basis for 𝑉 and simply take the remaining guys, okay? So it's easy enough to see. 

So this is quite straightforward to do. Or you find a, you know, simple basis for 𝑈⊥ and apply 

Gram-Schmidt, you could do that also. So many methods out there. So what is interesting because 



of these results is that you can specify U by either specifying the spanning set for 𝑈, as in give a 

basis for 𝑈. Or you can give a basis for 𝑈⊥. Both of these sort of determine each other, right? If 

you give a basis for 𝑈⊥ and you define a matrix with the basis is coming up one row after the 

other... What will be 𝑈? If you define 𝑈⊥ as a row space of something? 𝑈 is simply the null space 

of that, right? So both of these are very valid definitions. And this is where the normal definition 

of a plane comes from, right? To specify a plane through the origin in ℝ3, you can either specify 

the plane, vectors in the plane, or you specify just one vector orthogonal to it. It uniquely specifies 

the plane, okay? So that is the idea behind these things, okay? So this is quite powerful. You can 

use it depending on some problems. For some problems, specifying the spanning set is easy. For 

some problems, specifying a basis for 𝑈⊥ is easy, okay? So for instance, if you want to test 

membership in a subspace, right, it's easy to check if it's orthogonal to 𝑈⊥. I mean the basis for 𝑈⊥ 

is better there, right? So with the spanning set, you have to keep solving some equation or 

something, right? So it's not that easy, okay?  

Okay. So I'll close this lecture with sums and intersections of subspaces. We have done this before 

also. We looked at how to compute basis for the sum of two subspaces, basis for the intersection 

of two subspaces and one can also use these orthogonal complements and ideas from there to help 

us with this, okay? So there are other ways of doing it. But orthogonal complements give you an 

interesting approach to this problem of sums and intersection of subspaces also and it gives us 

some practice to think of orthogonal complements, okay? Sum is easy with the spanning set, okay? 

You have a basis for 𝑈, basis for 𝑊. If you want to look at 𝑈 + 𝑊, you already have a spanning 

set with you, right? Spanning set is {𝑢1, … , 𝑢𝑘, 𝑤1, . . . , 𝑤𝑙}. You put them one below the other. You 

do elementary row operations. Simplify. You find the basis, right? So you can find 𝑈 + 𝑊 in a 

straightforward way. So what do you do for intersection of 𝑈 and 𝑊? One sort of textbook method, 

easy method is this result. (𝑈 + 𝑊)⊥ is actually (𝑈⊥) ∩ (𝑊⊥), okay? So this result one can use to 

do intersection. So let me just first prove this result and then show you how this works. So proving 

this result, usually, when you want to show two sets are the same, you want to show if some vector 

is on the left hand side, it is also on the right hand side. And some vector is on the right hand side, 

it is also on the left hand side. So if 𝑣 belongs to (𝑈 + 𝑊)⊥, right... So remember 𝑈 + 𝑊. 𝑈 is 

contained in 𝑈 + 𝑊. 𝑊 is also contained in 𝑈 +  𝑊. So clearly, you know, so if this belongs to 

(𝑈 + 𝑊)⊥, that same vector will belong to 𝑈⊥ and 𝑊⊥, okay? So it belongs in the right hand side, 

okay? So this sort of shows, this shows LHS is a subset of RHS, okay? So the next step is to show 

RHS is a subset of LHS. So for that let's define 𝑈⊥. 𝑈⊥ is the set of all vectors 𝑣 which are 

orthogonal to all the 𝑢𝑖s, right? So 𝑢𝑖s are the basis for 𝑈, okay? They would be orthogonal to all 

the 𝑢𝑖s. What is 𝑊⊥? Set of all 𝑣 which are orthogonal to all the 𝑤𝑖, okay? What is the intersection 

of these two? Set of all 𝑣 which is orthogonal to all the 𝑢𝑖 and orthogonal to all the 𝑤𝑖, okay? Is 

that alright? So this is the definition. Now what is that? At that point we are done, right? So because 

𝑈⊥ is this. Now, so this is the same as, you know the spanning set, okay? So this is... Okay? 𝑣 is 

orthogonal to spanning set of (𝑈 + 𝑊), okay? That is the definition, right? So this guy becomes 

exactly (𝑈 + 𝑊)⊥, okay? So any vector here belongs to (𝑈 + 𝑊)⊥. So this sort of shows, you 



know, RHS is contained in LHS, okay? May be even equal, you know? You can see how this is 

true. So this is a nice little result to have. So if you want to do intersection of two subspaces, there 

is a connection between intersection and sums, okay? So you can do a corollary here using the 

complement of complement idea. Instead of 𝑈, you put 𝑈⊥. 𝑊, you put 𝑈⊥. You see that 𝑈 ∩ 𝑊 

is (𝑈⊥ +  𝑊⊥)⊥, okay? So this is a result one can use to find intersect. There are other methods 

also. I am just giving you a method based on orthogonal complements. So this kind of connection 

is very interesting.  
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So let me show you a quick example of this and close this lecture, okay? So here is a, here's two 

subspaces I have specified using spanning sets, right? So 𝑈 is row space of [1 2 3 4;  3 4 5 6] and 

𝑊 is row space of something else. So supposing you want to find 𝑈 + 𝑊. This is good enough, 

right? So you want to find 𝑈 + 𝑊, it's nothing but all these four put one below the other. It's easy 

to do, right? So maybe I should write that down. 𝑈 + 𝑊, the spanning set description is very good. 

Simply row space. Row space of [1 2 3 4;  3 4 5 6;  1 1 1 1;  1 − 1 1 − 1], okay? So that is easy 

enough to write. Now 𝑈 ∩ 𝑊, what do you do for 𝑈 ∩ 𝑊? It is good to think in terms of the 

orthogonal complement. So you find this basis for the orthogonal complement which is nothing 

but this, you have to do row elimination and find the null space of this. So 𝑈 simply becomes the 

null space of this guy, okay? So once again what did I do here? So I found, so 𝑈 is the row space 

of this, okay? And the 𝑈⊥, right? What is 𝑈⊥? 𝑈⊥ is going to be null of this itself, right? Maybe I 

am just going around in circles here. So let me now just write it. Yeah, so this is not wrong. Except 

that maybe you don't quite see it. So 𝑈⊥ is basically null of [1 2 3 4;  3 4 5 6], okay? And you can 



find the basis of the null, okay? You do the, you know, the usual row elimination and find the basis 

of the null, you will find that to be (1 − 2 1 0) and (2 − 3 0 1), okay? So there are other basis 

vectors as well. But this is the basis for the null, okay? This is the basis for the null space. So 𝑈⊥ 

is nothing but the row space of this, right? So 𝑈⊥ is the row space of [1 − 2 1 0;  2 − 3 0 1]. So 

I can write 𝑈 in other words as the null of this same matrix, right? So it's all, I mean, I think in this 

one little thing, I have specified so many connections. So instead of writing 𝑈 as row space, I can 

write 𝑈 as the null space of this guy. So same thing with 𝑊. Instead of writing it as row space of 

this, I can write null space of this, okay?  
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So think about what I did here, right? So I have 𝑈, I know 𝑈⊥ is null of that same matrix. I find 

the basis of the null. So 𝑈⊥ becomes row space of this guy. So now what would be 𝑈? 𝑈 will be 

null of the same guy, that's what I wrote here, okay? Same thing I did here, okay? So hopefully 

you get this. This is a nice little connection that you can do here between row spaces, null spaces. 

So once you write 𝑈 and 𝑊 as null spaces of two things, 𝑈 ∩ 𝑊 is very easy, right? 𝑈 is everything 

orthogonal to the rows of this. 𝑊 is everything orthogonal to the rows of this. So what is 𝑈 ∩ 𝑊? 

It needs to be orthogonal to all four of them. So you put one below the other, so you get null of 

this and now you do row elimination here to get it into standard form, you get null space of this. 

And from there you can go back to the row space, okay? So you find, you know, this is, what is 

null of this? You have a basis (1, 1, 1, 1). So 𝑈 ∩ 𝑊 is row space of this. Is that okay? So these 

two row spaces have an intersection which is just (1, 1, 1, 1). It’s a dimension one intersection, 

okay? So this kind of comfort in moving from, you know, spanning set to the orthogonal basis and 



orthogonal basis back to the spanning set can help you quite a bit in problems like this. Finding 

intersection, finding some things. And this is very interesting to look at as well, okay? So that is 

the end of this lecture. Thank you very much. 

 

 


