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Sequences and counting paths in graphs 

Hello and welcome to this lecture on applications of eigenvalues and all that. So we are going to 

continue and look at more, a different type of application. So it is about some sort of counting, 

combinatorial. We'll use something called graphs and sequences and do some counting and things 

like that. Everything is tied to this evolution in discrete time, okay? So one step to the other if you 

can have a state, then multiply by a matrix to get the next state, you know what happens, right? 

Eigenvalues enter the picture. So it turns out in completely different looking applications also. 

Essentially what happens is this sort of recursion right? There is a state and the next state becomes 

a linear recursion, right? So linear relationship from this state gives you the next state. So this is 

used in so many other places and in something unlikely also. I mean, you may not have thought 

about it that way, but you can use eigenvalues for various different counting problems in the 

discrete setting, based on that, okay? So we're going to see a few quick applications in this short 

lecture on this topic, okay?  

The recap is largely similar to before. So let's proceed. We'll start with one of the simplest 

applications out there, okay? So this fibonacci sequence, okay? Of course it continues, okay? It’s 

common and well known, okay? So what happens here? You have this sequence. It starts with 0, 

1. And the next value in the sequence is the sum of the previous two values, right? You have 𝑎𝑘 =

𝑎𝑘−1 + 𝑎𝑘−2. Hopefully I have done the addition correctly, okay? So you can keep proceeding like 

this, you will get the fibonacci sequence, okay? 𝑎𝑘 =  𝑎𝑘−1  +  𝑎𝑘−2, okay? So maybe you thought, 

you know, there is no eigenvalue here, but notice there is a recursion and the recursion is linear, 

okay? Anytime you have some recursive, you know, step like this and it’s linear, you can imagine 

eigenvalues will enter the picture, okay? So when they do enter, you can describe this in 

eigenvalue, using eigen values also. So for that I need this notion of state. So I will define my state 

as (𝑎𝑘 𝑎𝑘−1). The state at time 𝑘 is (𝑎𝑘 𝑎𝑘−1). So you can see why I need the 𝑎𝑘−1 also, right? 

Because only when I have two things, I can find the evolution properly. So 𝑥𝑘 you can write is 

simply this [1 1;  1 0] times 𝑥𝑘−1, okay? So it's a very trivial thing to establish that this equation 

is true. So I have my linear, you know, single step time evolution for this sequence. And now I can 

use my eigenvalues, okay? So it's a very simple sort of problem here. But still, you know, 

eigenvalues enter the picture quite naturally. So you can find the eigenvalues for this matrix, you 

will get (1 + √5)/2 and (1 − √5)/2. You can find the eigenvectors ((1 + √5)/2, 1), ((1 −

√5)/2, 1). Then you can express, you know, the initial state. What is the initial state? (1 0), right? 

(1 0) is the initial state. You can express the initial state in terms of the eigenvectors and then you 

will know how the evolution will happen, okay? This is what you do, right? So once you do that, 



you are done, isn't it? And if you do that you will get a formula for 𝑎𝑘 which is this very famous 

formula for the fibonacci sequence, okay? So this is a very simple application but you again see 

that how anytime you have a linear equation, linear recursion, eigenvalues and eigenvectors 

naturally enter the picture, okay? So let us push to other types of applications of this form where 

maybe you do not think naturally about eigenvectors, eigenvalues but they will enter the picture, 

okay?  
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Here is an example. Let us say I am interested in binary sequences. What are binary sequences? 

Binary means 0 or 1, okay? Every value is 0 or 1. And then I have a sequence of such values, 

okay? I am interested in binary sequences that do not have consecutive ones, okay? So if you have 

binary sequences of length 100 say, okay, how many total binary sequences are there of length 

100, 2100, all possible hundred, all possible sequences are there, 2100. Out of this 2100, how many 

do not have consecutive ones? Consecutive ones are not allowed. Every one should be followed 

by a zero, okay? How do you count that? How do you, how do you count that, okay? It seems a 

bit unnatural and what is the connection to eigenvalues, okay? So it turns out there is a connection. 

Once again this linear recursion type thing is very important, okay? So let us say 𝑎𝑘 is the number 

of binary sequences of length k with no consecutive ones. I will do this little bit of trickery here. I 

will define two other numbers. One is 𝑏𝑘 and another is 𝑐𝑘. What is 𝑏𝑘? Notice what I've done 

here. I'm introducing some sort of a state, okay? So you'll see how that works, number of binary 

sequences of length 𝑘 with no consecutive ones, that's okay. But ending in zero, okay? The last bit 

is zero. So you can see that is important, no? You can imagine when it grows, what the last bit is 



will be important in the sequence. So number of sequences that I have which end in zero I am 

going to call 𝑏𝑘. I am going to call 𝑐𝑘 as the number of binary sequences of length 𝑘 with no 

consecutive ones but ending in one, okay? Once I have 𝑏𝑘 and 𝑐𝑘, I can write 𝑎𝑘 =  𝑏𝑘  +  𝑐𝑘. 

That's easy enough, right? So just total. That's easy enough. But I can also write evolution for 𝑏𝑘 

and 𝑐𝑘, okay? 𝑏𝑘+1 =  𝑏𝑘  +  𝑐𝑘. Why is that? I can take every sequence of length 𝑘 ending in 0, 

okay, and then add a zero to it, I will get another sequence which ends in zero, okay? Which is 

again valid. No consecutive ones. I can also take a sequence which ends in one and add a zero to 

it, I will get another length (𝑘 + 1) sequence which will end in 0, okay? So 𝑏𝑘+1 = 𝑏𝑘 + 𝑐𝑘, okay? 

But what about 𝑐𝑘+1? 𝑐𝑘+1, if it has to end in 1, I cannot take anything from 𝑐𝑘, right? Because if 

it's already ending in 1, I cannot add one more 1 to it because that would violate the no consecutive 

ones principle. I have to take only previous sequences which end in zero and then add a 1 to it. So 

𝑐𝑘+1 becomes equal to 𝑏𝑘, okay?  
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So I forgot the equal to sign here, apologies for that. There is an equal to, sorry about that. 

Hopefully I will fix it in the slides. So (𝑏𝑘+1 𝑐𝑘+1) is equal to, look at the same matrix showing up 

here [1 1;  1 0] times (𝑏𝑘 𝑐𝑘), okay? So this is a nice relationship. I have a state evolution and once 

I have a state evolution, once I know how to start off, you know, I mean for 𝑘 = 1 and all it’s easy 

to find out (𝑏1 𝑐1), you know where it starts, okay? Then I can do the full evolution and to find 𝑎𝑘 

I simply have to add up these two things, okay? So I'll skip the details here and you can quickly 

show that this is true also for 𝑎𝑘, okay? So let me draw this equal to here, okay? So you have this 

simple relationship for 𝑎𝑘, okay? So this is nice, isn't it? So to count the number of, you know, 



binary sequences of length 𝑘, you have a very simple formula. In fact, you know, if you look at 

what might happen here, you know? So ((√5 −  1)/2, okay? So this if you look at the absolute 

value of this guy, ((√5 −  1)/2 is actually less than 1, okay? So when 𝑘 increases, the second 

term will go off to 0. ((√5 +  1)/2 is actually greater than 1, so only this term will survive. So as 

𝑘 blows up, 𝑎𝑘 becomes something like this, okay? So one can write based on this as 𝑘 → ∞, 𝑎𝑘 ≈

((1 + (√5)/2)^𝑘, okay? So of course there is all constants and all that, doesn't matter. And if you 

want to rewrite it a little bit... This will become... √5 I am sorry. This will become, you know, 

2
𝑘𝑙𝑜𝑔2(

1 +√5

2
)
, okay? So this gives you a good picture, right? So 𝑎𝑘 is the number of length 𝑘 binary 

sequences, okay, with no consecutive ones. What is the total number of length 𝑘 binary sequences? 

It’s 2𝑘. If you want no consecutive ones, what will happen? It's 2
𝑘𝑙𝑜𝑔2(

1 +√5

2
)
. So this number I 

don't know what it is, I think it's some 0.69 or something like that. So you will get a good feel for 

how this number grows, okay? As 𝑘 becomes larger and larger, okay? So that’s, so this kind of 

expression is very useful to understand what happens to these sequences, okay? So once again a 

very, you know, an application which looks like there is no eigenvalue there. But there is a linear 

recursion hidden there and eigenvalues once again wonderfully show up and control the asymptotic 

behavior in a very nice way. 

Okay. So I am going to give you a picture to understand the previous one, okay? So the previous 

counting that we did of number of binary sequences of, you know, without consecutive ones can 

be thought of as a walk in a graph. So now what is a graph? A graph is basically nodes connected 

with edges, okay? So here is a graph, very simple graph. There are two nodes. One node is zero 

corresponding to the node bit zero in the binary sequence. And the other node is one corresponding 

to bit one in the binary sequence, okay? So now notice what do I mean by walk in the graph? So 

at every node, when you, when you are walking in the graph, at every node you will be, you will 

start at some node, let us say you start at node 0, okay? You have a choice to pick one of the 

outgoing edges and walk along it, okay? So out of node 0, I could either pick this edge and walk 

to node 1 or I could pick this edge and stay in node 0 itself, okay? So that is called a walk in the 

graph. So once you come to node 1, what happens? There is only one outgoing edge. So I have to 

walk back to 0, okay? Is that okay? I have to walk back to 0. So this, if I count the number of walks 

of length 𝑘 in this graph, I will be counting the number of binary sequences of length k with no 

consecutive ones, okay? So counting walks in graphs is what I was doing in the previous example.  

So maybe this graph was too simple. Maybe we want to, you know, make the graph a little bit 

more complicated. Here is another graph, okay? There are three nodes now. 0, 1 and 2. And I 

might be interested in counting walks in this graph. So why would you want to do that? There are 

lots of applications quite often. But this is interesting. But let me not go into great detail here. So 

let us just say I am interested in counting walks of length k in this graph below, okay? So how 

does the walk behave? Means I could be, I could start at zero, let's say. I can either stay at 0 or go 

to 1. If I stay at 0, the same thing continues. But if I go to 1, I have to pick up this guy and go to 2, 



okay? So at 2, now I have a choice, okay? All possible choices are there. I could go off to 0 or I 

could go off to 1 or I could stay in 2 itself, okay? So this is what happens in this graph. So how do 

you count walks in this graph? So what you do is this. Again the same trick, okay? So supposing 

walks of length 𝑘 in this graph, supposing this is 𝑎𝑘. I will define 𝑎𝑘0, okay? This is number of 

walks of length 𝑘. Length of a walk is basically number of edges that you traversed, okay, ending 

in 0, okay? So let’s say you assume you started at 0, okay? You can change the starting also. And 

then 𝑎𝑘, you say you start at zero and you are interested in 𝑎𝑘. 𝑎𝑘 is the number of walks of length 

𝑘 starting at zero. Let us say that’s what you are interested in. So 𝑎𝑘0 will be the number of walks 

of length 𝑘 ending in 0, node 0. You define also 𝑎𝑘1 which is number of walks of length 𝑘  ending 

in 1. Likewise you define 𝑎𝑘2, okay? So I will put a ditto here. Ending in 2, okay? So now you can 

write (𝑎(𝑘+1)0 𝑎(𝑘+1)1 𝑎(𝑘+1)2) as a 3 × 3 matrix here times (𝑎𝑘0 𝑎𝑘1 𝑎𝑘2), okay? Think about 

what you would put here if you want to end at 0 and if you had previously ended at 0. Yes you can 

have a possibility. There is one there. If you had previously ended at 1, there is no way you can go 

to 0, right? So this would be 0. If you had previously ended at 2? Yes, it’s possible, okay? Now 

what about 𝑎(𝑘+1)1? If you previously ended at 0? Yes it's possible. If you previously ended at 1, 

no chance. If you previously ended at 2 also it is possible. Is that okay? You have that. And now 

what about 𝑎(𝑘+1)2, okay? If you previously ended at 0, you cannot get 2. If you previously ended 

at 1, yes it is possible. This is also possible, okay? So hopefully I got this right.  
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So notice what this matrix is. You could call it 𝐴, okay? And this defines your linear recursion and 

the eigenvalues of this matrix determine what is going to happen, okay? So now notice what this 



matrix is, okay? This matrix is an interesting matrix. It has 3 columns and 3 rows. You can imagine 

that every row corresponds to 0, 1, 2. Every column also corresponds to 0, 1, 2 node by node, 

okay? And what does this 1 represent? If there is an edge from 0 to 0, I put a 1 here. And here what 

do I do if there is an edge from 1 to 0? I put a 1 there. There is no edge from 1 to 0. So I put a 0 

here. If there is an edge from 2 to 0, I put a 1 here. Yes that is there. So here there is an edge from 

0 to 1, I put a 1 here. If there is an edge from 1 to 1, I put a, there is no edge so I put a 0 here. There 

is an edge from 2 to 1, I put a 1 here. So this matrix sort of captures the graph. It’s called in, in 

some places it is called some sort of an incidence matrix, okay? And it captures the connections in 

the graph, okay? So this matrix captures very cleanly for you the connections in this graph and that 

connection also gives you the evolution that is needed when you want to count walks in a graph, 

okay? So you go here and I am not going to give you the eigenvalues, eigenvectors of this 𝐴. There 

is a very powerful theorem which says if you have a matrix with positive values then there is the 

largest absolute value, absolute value of the eigenvalue is actually positive. And, you know, all 

those kinds of wonderful results are there. I'm not going to talk in detail about it. But you can go 

ahead and find the eigenvalues, eigenvectors. See what happens and you will know even if it is 

non diagonalizable, right? So you will know what happened to 𝐴𝑘 as 𝑘 becomes really, really 

large, okay?  

So hopefully this lecture... So this is the last slide. I am going to stop as far as this lecture is 

concerned. Hopefully this lecture gave you a feel for how, you know, eigenvalues and this linear 

recursion idea, okay, shows up in counting problems of various types in graphs and how, you 

know, matrices are naturally associated with graphs. Notice how this incidence matrix became 

naturally associated with this graph, particularly with respect to counting problems of this type, 

okay? So this is a very powerful idea. In a large area of mathematics and many applications people 

use this connection between graphs which express some relationship to matrices. And then 

eigenvalues of those matrices, you know, control the linear recursions or counting or walking that 

happens on the graph and you get some nice results in that fashion, okay? So I will leave you to 

work out additional details of this. But this is the conclusion of the lecture. Thank you very much. 

 


