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Properties of Eigenvalues 

Hello and welcome. In this lecture we are going to look at a few properties of eigenvalues with 

respect to, you know, the matrix and the linear map for which you're computing these eigenvalues, 

what they mean in terms of, say, rank of the linear map or, you know, some other properties of the 

linear map. Are they related to that? Some interesting properties like that. And some connections 

between eigenvalues for different types of matrices. Say 𝐴 and 𝐴−1 if it's invertible. 𝐴 and 𝐴𝑇. Are 

there connections? Are there interesting things to look at? So these are basic properties. Let's 

quickly go through them. Many of them are easy to prove but nevertheless it's good to see them 

once and understand.  
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A quick recap. The recap just goes through what we've been learning so far. The vector space 𝑉 

and how a matrix represents a linear map there. We have this fundamental theorem of linear maps 

and how linear equations can be solved using these notions of null space and all these ideas. And 

the four fundamental subspaces of a matrix, its importance. And we also looked at eigenvalue and 

eigenvector. We now know quite a bit about eigenvalues and eigenvectors. The basis of 



eigenvectors results in a very simple diagonal matrix representation for the linear map. And we 

also saw that every linear map has an upper triangular matrix representation. All of these things 

are important and we'll use some of them and expand on them to study more properties of 

eigenvalues, eigenvectors in connection with the matrices, okay?  
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So let's see that. First thing we'll see is the connection between the null space, nullity and then you 

know, invertibility and eigenvalues. So if you have a linear map from, you know, linear operator 

from 𝑉 to 𝑉, of course, there is a very nice connection between the eigenvalue 0 and null space 

vectors, okay? So it is very easy to connect. It's, if you think about it, you can see 0 being an 

eigenvalue, right? If 0 is an eigenvalue, then the eigenvector corresponding to 0 has to be in the 

null space, right? So v is the eigenvector with eigenvalue 0. Then what happens, right? What 

happens is: you have 𝑇𝑣 = 𝜆𝑣 and if 𝜆 is zero, 𝑇𝑣 becomes zero, right? And 𝑣 is non-zero, right? 

So every linearly independent eigenvector with eigenvalue zero gives you a linearly, you know, 

gives you a set of linearly independent vectors for the null space, okay? So that is like an if and 

only if, right? It goes both ways. So how many linearly independent eigenvectors will you have 

for an eigenvalue 0? It depends on the, it is exactly equal to the dimension of the null space of 𝑇, 

okay? So nullity is also the geometric multiplicity of the eigenvalue 0, okay? So that is another 

way of thinking about it. GM of 0 is nullity of 𝑇, okay? So this is another relationship you can 

think about. The geometric multiplicity of the zero eigenvalue is the number of linearly 

independent vectors in the null space, right? So this is a nice relationship to remember. So 

eigenvalue 0 corresponds to null space eigenvectors. So that’s a good simple relationship. Now 



this gives you a very obvious connection to invertibility, okay? So only if every eigenvalue is non-

zero, okay? So there cannot be an eigenvalue 0 for an invertible operator 𝑇, okay? So this is a good 

check. Both ways it goes. If 𝑇 is invertible, no eigenvalue is zero. If no eigenvalue is zero, 𝑇 is 

invertible. It is quite a very direct corollary of the above. It’s an operator, 𝑉 to 𝑉, so all of them 

are equivalent, right? Injective, surjective, invertibility. And null space dimension being 0 is the 

condition for invertibility. You can go back to the previous thing and come up with quite an easy 

conclusion.  
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Now when 𝑇 is invertible, is there a connection between the eigenvalues of 𝑇 and 𝑇−1, okay? It 

turns out there is a very direct connection, okay? So 𝑇 is invertible and 𝜆 non-zero is an eigenvalue 

with eigenvector 𝑣. Then 𝑇−1 has eigenvalue 1/𝜆 with the same eigenvector 𝑣, okay? So the proof 

is sort of trivial. 𝑇𝑣 = 𝜆𝑣. So you can operate with 𝑇−1 if you like on both sides. And then you 

will write 𝑇−1𝑣 =
1

𝜆
𝑣. So you see 𝑣 becomes an eigenvector for 𝑇−1 and with the eigenvalue 

1

𝜆
, 

okay? So if you know the eigenvalues, eigenvectors for 𝑇, you know the eigenvalues and 

eigenvectors for 𝑇−1 and they have that relationship of reciprocal to each other, okay? So even 

multiplicities, everything will carry over. So 𝑇 and 𝑇−1 are very, very strongly connected with 

respect to eigenvalues and eigenvectors also, okay? So that's an important thing to know.  

Okay. What other properties are there? Let's look at eigenvalues and transpose. We saw inverse 

has this connection, what about transpose? It turns out they also share the same set of eigenvalues, 

okay? So if 𝜆 is an eigenvalue of 𝐴, then 𝜆 is an eigenvalue of 𝐴𝑇 also. The proof again is quite 



simple. If 𝜆 is an eigenvalue, then (𝐴 − 𝜆𝐼) is non-invertible, okay? But we know rank of (𝐴 −

𝜆𝐼) is the same rank of (𝐴𝑇  − 𝜆𝐼). How do I know that? So you know row and column space get 

turned around. But their dimensions remain the same whether you do 𝐴 or 𝐴𝑇. So you do (𝐴 −

𝜆𝐼), the dimension of its row space or column space will be the same as the dimension of row 

space or column space of (𝐴𝑇  − 𝜆𝐼). So the rank is the same which means (𝐴𝑇  − 𝜆𝐼) is also non-

invertible. So if (𝐴 − 𝜆𝐼) is non-invertible, (𝐴𝑇  − 𝜆𝐼) is not invertible. So 𝜆 becomes an 

eigenvalue. But interestingly, the eigenvectors are now going to be different, okay? So that's not 

very easy to figure out, right? So given an eigenvector for 𝐴 with eigenvalue 𝜆, one can't very 

immediately go to an eigenvector for 𝐴𝑇. The eigenvalue is the same but the eigenvector is going 

to be very different, okay? So there they will, the subspaces are different. So the way the 

eigenvectors will map will be very different. They will, you will get some equivalent eigenvectors 

but they can be very different from the eigenvectors for 𝐴 and 𝐴𝑇, okay? So because they multiply 

different sets of rows or columns, okay? So this is the connection for eigenvalues and transpose.  
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Determinant, okay? So that's another property that we saw for an operator, right? Determinant of 

the operator is a very simple form, you can compute it using many interesting methods. You can 

do row reduction and compute etc. It has so many wonderful properties. Here is another nice 

property for determinant. Determinant is equal to the product of all the eigenvalues, okay? Once 

again the proof is very easy. You find a basis in which the linear map is going to be upper triangular 

and determinant is the product of the diagonal elements. And those diagonal elements are exactly 

the eigenvalues and you're done, okay? So proof is very easy. But this is a powerful property as 



well. So determinant is equal to the product of eigenvalues. So you can again see if any of the 

eigenvalues are zero, determinant is going to be zero, the the map is non-invertible, okay? So if 

the, if none of the eigenvalues are zero, determinant is non-zero and the linear map is non-

invertible. All of these are connected in some very nice way, okay? So this is a simple connection 

and property for connecting eigenvalues and determinants. So this is quite useful sometimes in 

small problems or any other problem also if you want to compute eigenvalues sometimes the, you 

know,  problem can be a little bit more complicated, you can look at determinant and get an idea 

for the product of the eigenvalues and that might give you some idea about how, you know, 

eigenvalues can behave. So this kind of property is very useful for that matter.  
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Another interesting property of an operator which we have not defined so far and we have not 

spent too much time on. Later on maybe we will see it. But for now this is a very important 

property. It has a lot of connections to many other applications also, okay? So it is called trace, 

okay? The trace, I will define it in one way and justify why the definition is correct. I will do it 

like that. So an operator 𝑇 has something called trace associated with it. And how do you compute 

the trace? I am going to say the following thing to compute the trace. You fix some basis, and find 

the matrix representing this operator 𝑇 and then you sum up the diagonal elements of that matrix, 

okay? Is that clear? So you fix some matrix, fix some basis for the vector space and find the matrix 

corresponding to the linear map and add up the diagonal elements, you will get something in the 

field, scalar field. And that is called the trace of the operator 𝑇. Now notice I am saying operator, 

trace for the operator. But I am working with a particular matrix. What if there is some other 



matrix? It turns out whatever basis you pick, whatever matrix, as long as it represents the same 

linear map in any basis, the trace will be the same, okay? You can't change by changing the basis. 

You can pick any basis you like, you'll get the same trace, okay? So for that... Why is this definition 

valid? It's because the sum of diagonal elements of 𝑆𝐴𝑆−1 for any invertible 𝑆, and the matrix 𝐴 

are equal, okay? So once I show this, a similarity transform, a change of basis is not going to affect 

the trace, okay? So trace can be thought of as a property of the, or the number corresponding to 

the linear map rather than the matrix, okay?  
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So how do you prove this? The proof is not very hard. There are two properties. The first property 

is 𝑡𝑟𝑎𝑐𝑒(𝐴𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐴), okay? Remember 𝐴𝐵 and 𝐵𝐴 have to be, you know, square matrices. 

But, you know, 𝐴 and 𝐵 need not even be square for this property to hold, okay? So, but 𝐴𝐵 needs 

to be square, 𝐵𝐴 needs to be square. Then 𝑡𝑟𝑎𝑐𝑒(𝐴𝐵) = 𝑡𝑟𝑎𝑐𝑒(𝐵𝐴). This is a very simple 

exercise. Just a question of finding out the diagonal elements, summing them up and seeing that 

whether you do 𝐴𝐵 or 𝐵𝐴, the diagonal elements will sum up to the same value. It’s not very hard 

to prove, okay? One can prove this. Once you show this, showing the trace of 𝑆𝐴𝑆−1 and 𝐴 being 

equal is quite easy, okay? So you read 𝑆𝐴𝑆−1 as 𝑆(𝐴𝑆−1), and this is your 𝐴 𝐵. And that's same 

as trace of 𝐵𝐴. And when you do 𝐵𝐴, you get 𝑆−1𝑆 and that will cancel and you get trace of 𝐴, 

okay? So it's a very simple proof. So you see that trace is a very well defined property of the 

operator. Seems to be an interesting property. Does not change when you change a basis, okay?  



So is there a connection between trace and eigenvalues? Yes there is. It’s a very nice and very 

interesting connection. Trace is equal to sum of all the eigenvalues, okay? When I say sum of 

eigenvalues, remember, the multiplicity matters. If it occurs multiple times, you have to add it 

multiple times. Same thing with product also. If the eigenvalue appears multiple times, you have 

to multiply it all the times, okay? So keep that in mind. Again the proof is very simple. You just 

simply find the upper triangular matrix representation for 𝑇 and the trace is the sum of diagonal 

entries. And the diagonal entries are the eigenvalues and you're done, okay? So it's a very simple 

proof once again. And you have this wonderful property that trace is equal to sum of the 

eigenvalues. So now this can also be very useful in practice. Quite often the matrix is given to you. 

Maybe it's big, maybe it has some structure to it. But you can find the trace. Trace is simply the 

sum of the diagonal elements. And you know that the eigenvalues all add up to that number and 

that can give you some good input to quickly find out the eigenvalues themselves, okay? So this 

is also something important.  
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So in this short lecture to summarize we saw a few nice and simple properties of eigenvalues, 

eigenvectors. And you can see that they tell you more and more about the linear operator, okay? 

So they are very nicely tied up with a lot of foundational, fundamental properties, okay? So we'll 

stop here as far as this lecture is concerned. 


