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More on Eigenvalues, Eigenvectors, Diagonalization 

Hello and welcome to this lecture. We are going to continue looking at eigenvalues, eigenvectors. 

Idea of diagonalization in particular will be introduced and talked about in detail. So this is sort of 

a continuation of what we did in the previous lecture where we defined eigenvalues, eigenvectors. 

We saw the notion of, I mean how to use this determinant to find this polynomial, find the roots 

and then solve for the eigenvalues and then solve for the null space to find the eigenvectors, okay? 

We saw what the definition was. We're going to continue that, we'll study it from a different point 

of view. You know, always studying things from multiple points of view helps when you're looking 

at the basics, okay? So let's get started. Particularly this diagonalization idea is extremely 

important. It's one of the pillars of the applications of linear algebra in most areas of engineering, 

okay? So let's carry on.  
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A quick recap. Once again let us go back to the very beginning of this course where we introduced 

vector space 𝑉 over either the real field or the complex field primarily in this class. And then we 

saw a linear map, once you pick a basis, is represented nicely by a matrix. And then there are all 



sorts of interesting relationships between the null space, range space and all these other spaces 

associated with the matrix. And then this helps us solve linear equations in a very clean way. And 

the solution always has a certain nice form which you can quite easily find using elementary row 

operations, okay? And of course we looked at the four fundamental subspaces and their 

connections and that gave us a better understanding of the linear map. And then we saw that, you 

know, you can do elementary row operations, pick your bases. If you're allowed to pick input and 

output basis you get this row reduced echelon form which is really a very simple form for any 

linear map. Now when you go to operators which are linear maps from the vector space to itself, 

then you do not want to have that freedom of different input and output bases, you want to have 

the same basis. When you want to have the same basis, there are some restrictions. It is not possible 

to use elementary row operations the way we did. So we have to think of what is possible and that 

is how we ended up with this notion of eigenvalues, eigenvectors and they seem to be really really 

useful in simplifying the matrix corresponding to the linear map, okay? And we saw towards the 

end of the previous lecture this very interesting result that distinct eigenvalues, the eigenvectors, 

corresponding to that, corresponding to distinct eigenvalues are linearly independent. And that is 

a very promising and very interesting result and we will put such results to use in this lecture when 

we talk about diagonalization. But before we do that…  

So the way we introduced eigenvalues and eigenvectors, it looked like determinants played a very 

crucial role. But in reality you can develop all of that without determinants, they do not really, they 

are not very fundamental to the theory of eigenvalues, okay? So what we will see in the beginning 

of this lecture is how to think of eigenvalues in sort of a linear map, linear operator fashion without 

bringing in the determinant. So that will be the first part of the lecture. And then we will move on 

towards diagonalization. Okay. So what is it that the operator can do which distinguishes it from 

a general linear map, right? So when you have an operator from a vector space to itself, right? The 

operator can be applied repeatedly over and over again to a vector, okay? So you have a non-zero 

vector 𝑣. You apply 𝑇 to it once, you get 𝑇𝑣, if you had already ended up from 𝑉 to 𝑊 which is 

another vector space, maybe of a different dimension, it is not natural to use 𝑇 again, right? So on 

the other hand, if you are in the same vector space 𝑉, maybe using 𝑇 again will tell you something, 

okay, will tell you something about 𝑇 itself, right? So when you repeatedly use the matrix, what 

happens to a particular vector is something that is interesting. And this ends up happening a lot in 

practice in real life. So you will see. It may not be very immediately apparent to you. So maybe in 

the next week when we look at applications, I will give you so many applications where this notion 

of operator occurring and operating again and again on a vector and how we want to understand, 

how that works plays a crucial role. And in fact eigenvectors show up naturally. Eigenvalues, 

eigenvectors show up naturally when the operator is applied repeatedly to a non-zero vector, okay? 

So let me look at that and show you how this happens.  

So 𝑇 can be applied repeatedly to 𝑣 and for this purpose we will restrict the field to be complex 

because, you know, the roots and all exist in complex field so it's easy for me to restrict to complex 

field. So let's look at the 𝑇 being repeatedly applied to 𝑣. So what would happen when you apply 



it repeatedly? I mean you can keep on doing it. So I'm missing some dot dot dot here, okay? So 

you can imagine there needs to be a dot dot dot, okay? So repeatedly doing it, 𝑣, 𝑇𝑣, you know. 

𝑇2𝑣, 𝑇3𝑣, you know, 𝑇 applied repeatedly to 𝑣, you can go on up to 𝑛, okay? You can in fact 

maybe imagine you go 𝑛 + 1, 𝑛 + 2,  etc. but, you know, something interesting happens when you 

go to 𝑇𝑛𝑣, okay? The reason is you now have 𝑛 + 1 vectors, okay? When you have 𝑛 + 1 vectors 

in a vector space of dimension 𝑛, what do we know? The 𝑛 + 1 vectors have to be linearly 

dependent, okay? So this is very interesting. You started with a non-zero vector 𝑣 and then you 

kept repeatedly applying the same operator to it, eventually you see you should have a linearly 

dependent set of vectors. Because you can keep on doing it, but you know, there is only finite 

dimension, so you should have a linearly dependent set of vectors. So there will be constants 

𝑎0, 𝑎1, … , 𝑎𝑛 and 𝑎𝑖 in complex such that this is true and not all 𝑎𝑖 are 0, okay? So in fact this little 

thing here about this equation, because I know 𝑣 is not 0, so in this equation 𝑎0, you know… So 

we usually say this, right? So we say not all 𝑎𝑖 are equal to zero, okay? This is a condition that is 

needed for linearly dependent.  
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In fact you can say a little bit more, you know? In fact in this case you can say at least one of 𝑎1 

through 𝑎𝑛 is not equal to zero, okay? Why is that? Because if all of the 𝑎1, through an were 0, 

then what will happen? 𝑎0 also should be 0, right? Because 𝑣 is not 0. Because I know 𝑣 is not 0, 

it has to turn out that 𝑎1 through 𝑎𝑛 something should be there to cancel out the 𝑎0𝑣, you know? I 

mean if 𝑎0 is 0, that's different, but this 𝑣 itself is non-zero, so in case if all of 𝑎1 through 𝑎𝑛 were 

0, then there is a problem, you can never get this to be equal to 0, right? So that creates an issue. 



So you, at least one of these 𝑎1 through 𝑎𝑛 will not be 0 also okay? So this particular type of linear 

combination will definitely involve a 𝑇, okay? Without involving a 𝑇 you are not going to be able 

to cancel out the 𝑣. So anyway think about why that is true. Of course if 𝑎0 is 0 or clearly then one 

of these guys has to be non-zero. That's okay. 𝑎0 is non-zero then one of these guys has to be also, 

has to be also non-zero, okay? So that's the way to think of this result. 

Okay. So what we will do is we can let 𝑚 be the maximum 𝑖 such that 𝑎𝑖 is not 0, okay? Since we 

know that this 𝑎1 through 𝑎𝑛 something here is non-zero, this 𝑚 will be at least 1, okay? It cannot 

be just zero, it has to be 1 or 2 or 3 or something. So some 𝑇 power is definitely involved and that 

𝑎𝑚 will not be zero, okay? So this equation becomes this equation, okay? So what is 𝑚? 𝑚 is the 

maximum 𝑎𝑖 such that that is non-zero. So everything to the right of 𝑚, 𝑚 + 1, 𝑚 + 2 and all is 

zero, okay? 𝑚 is the maximum index for which ai is not zero. Beyond that it becomes zero. So you 

get this equation, okay? Where 𝑎𝑚 is non-zero, okay? So basically I want the equation where this 

last term, the leading term is non-zero, okay? So I am finding out the maximum value of the index 

where it is non-zero and I am making an equation like that, okay? So here I do not know if 𝑎𝑛, 𝑎𝑛 

could be 0, right? So I go find the 𝑚, maximum index for which it is non-zero and get my equation 

here. And here I can say 𝑎𝑚 is non-zero, okay? So I have sort of like a polynomial equation here, 

right? So this should remind you of polynomials immediately, right? 𝑎0  +  𝑎1𝑇 +  … + 𝑎𝑚𝑇𝑚. 

𝑎𝑚 not zero. So degree 𝑚 polynomial. Except that this variable is not some unknown 𝑥 anymore, 

it is your operator 𝑇, okay? So you have to worry about if that makes sense, I mean can you think 

of polynomials where, you know, the unknown is an operator and does that make sense? You'll 

see quickly enough that it's perfectly fine, it makes sense. But before that, let's remind ourselves, 

if instead of this 𝑇, we were to think of our familiar unknown variable 𝑥 and think of the 

polynomial 𝑎0  + 𝑎1𝑥 + … +  𝑎𝑚𝑥𝑚, remember the field is a complex field, so I know this is 

going to factor into linear factors, right? So that was the Fundamental Theorem of Algebra 

repeatedly used on this polynomial. I know that there are 𝑚 roots, possibly with multiplicity, but 

there are 𝑚 roots and I can write it as 𝑎𝑚(𝑥 − 𝜆1). . . (𝑥 − 𝜆𝑚). So you will have linear factors 

like this, okay? So now it turns out instead of this 𝑥, you can put 𝑇 here, okay? And since these 

operators have an algebra, right? So you can add them, you can multiply them, okay? So all you 

have to do for polynomials is to be able to add and multiply, okay? So then everything works out 

quite okay and I don't want to go into great detail here for why the, you know, you can have the 

unknown variable... Think of it as an operator in the polynomial domain and everything works out 

quite okay. But still you can sort of imagine why that is true, okay? So that's always true. So this 

factorization of polynomials in terms of this unknown variable 𝑥 translates into a factorization of 

this polynomial in 𝑇, into a product of sort of linear factors, okay? So 𝑎𝑚(𝑇 − 𝜆1𝐼). . . (𝑇 − 𝜆𝑚𝐼) 

okay, so how do you make sense of this? You can sort of multiply this out, right? So because I 

know there is operator algebra, right? I can, I can add operators, I can multiply operators. 𝑇 into 𝑇 

will become 𝑇2, 𝑇 into 𝐼 will become 𝑇, you know? So I can multiply this out. When I multiply 

this out, the same rules of whatever I use for multiplying with this 𝑥 will also hold here. So if this 

polynomial factors in this fashion, this operator polynomial will also factor in this fashion, okay? 



So what do I have here? This polynomial equation, right? Where something into 𝑣, some 

polynomial into 𝑣, is equal to 0, now factors into 𝑎𝑚 which is non-zero times a bunch of linear 

factors (𝑇 − 𝜆1𝐼). . . (𝑇 − 𝜆𝑚𝐼)𝑣 =  0, 𝑣 ≠ 0.  
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So think about what all we have accomplished. We have done a lot in this slide, lot of steps here. 

You started with an operator, picked up a non-zero vector, looked at that non-zero vector and all 

the repeated applications of this operator on that vector. You notice that eventually there has to be 

a linear dependence, so you find the linear dependence equation and that is nothing but a 

polynomial times a vector being equal to zero. Polynomial in 𝑇. And then you take that polynomial 

and then factor it into linear factors. So eventually you get a bunch of linear factors multiplying a 

𝑣 equal to zero and 𝑣 is non-zero and 𝑎𝑚 is non-zero, okay? So now notice what should happen. 

You can give a proof for existence of eigenvalues without using determinants or anything like that. 

So far I've only used linear dependence, linear independence nothing else, right? So notice why 

that is true, okay? Since this product (𝑇 − 𝜆1𝐼). . . (𝑇 − 𝜆𝑚𝐼)𝑣 =  0, 𝑣 ≠ 0, there has to be at least 

one 𝑖 for which (𝑇 − 𝜆𝑖𝐼) is non-invertible, okay? So notice this product has 𝑚 such terms (𝑇 −

𝜆𝑖𝐼). Out of these 𝑚 terms, at least one needs to be non-invertible, okay? Why? I mean it is easy 

to see why, right? So if all of them were to be invertible, you can simply invert them one after the 

other, right? So (𝑇 − 𝜆1𝐼) is invertible. That times some vector is equal to 0. So you just simply, 

I know that what is inside itself should be 0, right? So if you have invertible operator, say some 𝑆. 

𝑆𝑣 equals zero means 𝑣 is zero, right? So the first thing is invertible means the remaining has to 

be zero. The next thing is invertible, the remaining has to be zero. So eventually you will get to 



𝑣 =   0. But 𝑣 is non-zero, so that is a contradiction, okay? So all of these (𝑇 − 𝜆𝑖𝐼) cannot be 

invertible, okay? There has to be some 𝑖 for which this (𝑇 − 𝜆𝑖𝐼) becomes non-invertible. If this 

equation has to be true, okay... So do not be too alarmed by this (𝑇 − 𝜆𝑖𝐼), it's just an operator, 

right? How does it operate on 𝑣?  (𝑇 − 𝜆𝑖𝐼)𝑣 is nothing but 𝑇𝑣 − 𝜆𝑖𝑣, okay? So it's a very well 

defined operator, okay? So don’t be, in case you are wondering what is this (𝑇 − 𝜆𝑖𝐼). okay? It 

acts on 𝑣 and you get 𝑇𝑣 − 𝜆𝑖𝑣, okay? So it's a very, very well defined proper operator. That's 

what I meant when I said, you know, operators can be put together as polynomials and they work 

very, very decently, okay? So no problem.  

There so this, there has to be an i for which (𝑇 − 𝜆𝑖𝐼) is non-invertible and I have found an 

eigenvalue, right? I start with a non-zero vector, okay? Remember once again, I did not start with 

anything else, I just started with the non-zero vector. I had my operator. I repeatedly applied, I got 

a polynomial in terms of 𝑇 times that non-zero vector being zero which, and then I factored that 

polynomial and then out of that linear factors, one of those terms has to give me an eigenvalue, 

has to give me a 𝜆𝑖 for which (𝑇 − 𝜆𝑖𝐼) is non-invertible, okay? So that gives you 𝜆𝑖 being an 

eigenvalue. So you can prove quite easily the existence of an eigenvalue without using any 

determinant or any argument. Only thing you need is the Fundamental Theorem of Algebra applied 

with the complex field, okay? So this is a very nice and clean, simple proof for why eigenvalues 

should exist.  

So now there are many other results and one of the results that we will see and use in this class is 

this interesting little result here. There can be at most dimension of V distinct eigenvalues for an 

operator, okay? So what is the proof? Proof is actually quite simple. The eigenvectors 

corresponding to distinct eigenvalues have to be linearly independent, okay? How many max 

linearly independent vectors can I have? Dimension 𝑉. So there can be at most dim 𝑉 distinct 

eigenvalues for an operator. So all these results do not really need determinant, right? See, one 

way of seeing this result is you see 𝑑𝑒𝑡(𝐴 − 𝜆𝐼), that gives you a polynomial of degree 𝑛, so it 

can have at most 𝑛 roots, so there can be at most, you know, or it can have exactly 𝑛 complex roots 

so it will have exactly 𝑛 complex eigenvalues is something you can say. But, you know, using 

these kind of arguments and the linear independence of eigenvectors which, you know, does not 

need determinants or anything, you can do these kind of results. So I am just trying to point out 

that in your book for instance, the development of eigenvalues is without using any determinant 

idea, okay? You do not have to use determinant idea to develop the eigenvalue. But, you know, 

it’s not wrong. Usually traditionally it is done. So I've just mentioned determinants also. But it's 

possible to build up this whole theory without using determinants at all, okay? But it's a nice way 

to think about it. Once again I want to remind you the way eigenvalues show up fundamentally is 

because you take any vector and when you repeatedly use an operator on it, eventually you have 

to get a linear dependence, okay? And that linear dependence forces something to give in the 

operator. So some repetition has to happen somewhere and that repetition can always be narrowed 

down to a one dimensional subspace if your polynomial factors fully into linear factors, right? So 

that is the basic idea. If your polynomial is not going to factor into linear factors, one of those 



terms has to be non-invertible so you may not get an eigenvalue type thing, you will get maybe a 

higher dimensional invariant subspace, okay? So that is the basic way in which this theory of 

eigenvalue develops. And in a way, if you just use the determinant, you are missing all this 

important connection. The fact that, you know, this repeatedly using an operator on a non-zero 

vector creates this invariant subspace, necessitates the notion of the invariant subspace. Otherwise, 

you know, you won't have that linear dependence, okay? So that is the idea. 
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Okay. So now that we know so much about eigenvalues, let's start trying to find eigenvalues for 

some simple matrices, okay? So we will start with diagonal and triangular matrices. You know 

what diagonal matrices are, right? Non-zero values only on the diagonal, everything else is zero. 

What about triangular? You have upper triangular and lower triangular. Upper triangular means 

diagonal and above the diagonal, you can have non-zero elements. Lower triangular means 

diagonal and below the diagonal you can have non-zero elements, everything else has to be zero, 

okay? So the result is actually quite easy, okay? If you have diagonal elements, if you have a 

diagonal operator, okay, diagonal matrix, sorry diagonal matrix, the diagonal elements become the 

eigenvalues, okay? The reason is you can look at (𝑇 − 𝜆𝑖𝐼) and it will be non invertible if 𝜆 is on 

the diagonal, okay? So it is easy enough to see it. I mean if you want I can write it down. So if you 

have diagonal elements 𝑑1, 𝑑2, like that, and if you do (𝑇 − 𝜆𝑖𝐼), what happens? If you do 𝑇 

minus... This is 𝐴 and if I do 𝐴 − 𝑑1𝐼, I will get 0 here, right? And then 𝑑2  − 𝑑1, so on, okay? I 

get a zero here which means this entire row became zeros, okay? So that means (𝐴 −  𝑑1𝐼) is non 

invertible and 𝑑1 becomes an eigenvalue, right? So that is one important rule to remember, okay? 



So this rule is very, very important, okay? So 𝜆 is an eigenvalue if and only if (𝑇 − 𝜆𝑖𝐼) is non 

invertible, okay? So it is a very easy rule to see from the definition, but you can see how useful it 

is for in many simple cases to find out the eigenvalues, okay? For, at least for the diagonal case, 

one can easily find out the eigenvalues. Same thing holds true for triangular matrices also, okay? 

All the diagonal values will be the eigenvalues for an upper triangular or lower triangular matrix.  
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So here maybe the invertibility is not too immediate to see. So let me give you a simple example. 

Let us say we look at [1 2 3;  0 1 4;  0 0 1] and, oh maybe I should do a different matrix, let me 

put 1, 2, 3 here. So suppose this is 𝐴 and if you want to look at 𝐴 − 𝐼. That is probably very easy, 

okay? [0 2 3;  0 1 4;  0 0 2], okay? So you can see here this one. So it becomes non-invertible, 

okay? What about 𝐴 − 2𝐼? You will have [−1 2 3;  0 0 4;  0 0 1], okay? So you notice here, 

anytime I have a zero here, okay, you will end up having a linear dependency to the left here, 

okay? So think about why that is true. Once I have a zero here, because I would have had, this is 

triangular, right, so it would be triangular non-zero. Maybe here. Once you have a zero here, these 

parts will be linearly dependent. You can even draw a line like this here and then these parts will 

be linearly dependent, okay? So think about why that is true. So that zero in the middle really kills 

the linear independence coming out, right? You can also see that is how the zeros are structured. 

So this also is non-invertible. So for diagonal and triangular matrices, eigenvalues are very, very 

easy. You can just pick up the diagonal values, they will become the eigenvalues for you. With 

multiplicity. If you have the same value repeating, that many times that eigenvalue will appear as 



a root in the determinant. You can also use the determinant definition. You know the determinant 

is a product of the diagonal elements for these kinds of things and the result ends up being true. 
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Okay. So now we move on to diagonalization, okay? So we saw that... Like I mentioned, it's, 

diagonalization is extremely important. I will try to give many examples and repeat this in so many 

different ways, but still it's one of the crucial ideas in linear algebra. So let's look at why that works. 

It's actually very easy if you think about why this should work, okay? So if... I'm going to give a 

sufficient condition for diagonalization, later on we will expand this condition, we’ll look at larger 

linear operators for which diagonalization is possible. For now I will look at a sub case or a 

sufficient case for diagonalization, okay? So if your linear operator has 𝑛 distinct eigenvalues, 

okay, right? What is 𝑛? 𝑛 is the dimension of the vector space 𝑉, and 𝑇 is an operator from 𝑉 to 

𝑉, okay? If your operator has 𝑛 distinct eigenvalues, the eigenvectors form a basis for the vector 

space 𝑉. Why is that? Very simple. Eigenvectors have to be independent for distinct eigenvalues. 

There are 𝑛 linearly independent eigenvectors. So you pick up all of them, put them together, that 

should be a basis, right? So we know that that is true. So that is going to work out, okay? So this 

leads to the diagonalization idea, okay? If you pick the basis of 𝑛 linearly independent 

eigenvectors, then in that basis 𝑇 will become diagonal, okay? Why is that? It is quite easy to see 

again. So what is the matrix in the basis of eigenvectors, right? So the first column is 𝑇𝑣1, second 

column is 𝑇𝑣2, so on, right? The last column is 𝑇𝑣𝑛, okay? So here I have taken 𝑣1, … , 𝑣𝑛 to be 

the basis of eigenvectors, okay? So the matrix will be 𝑇𝑣1 in the first column, 𝑇𝑣2 in the second 

column, …,  𝑇𝑣𝑛. Remember this has to be. When you find the coordinates, this needs to be, you 



know, coordinates with respect to what? With respect to the basis, the same basis, right? 

𝑣1, 𝑣2, … , 𝑣𝑛, okay? It's the same, same thing here. You find out the coordinates of 𝑇𝑣𝑛 in the basis 

𝑣1 through 𝑣𝑛, right? Is that okay? That gives you the matrix representation for 𝑇 in that basis 𝑣1 

to 𝑣𝑛, this is a standard way to find the matrix for an operator, okay? Now notice 𝑇(𝑣𝑖) is an 

eigenvector, right? 𝑣𝑖 is an eigenvector, sorry? So 𝑇𝑣𝑖 becomes 𝜆𝑖𝑣𝑖, okay? So what is 𝑇𝑣1? 𝑇𝑣1 

is 𝜆1𝑣1, okay? So 𝑇𝑣1 is 𝜆1𝑣1, that's all, there is no other 𝑣2 or 𝑣3 or anything, nothing happens. 

So 𝑇𝑣1s coordinates will simply be (𝜆1 0 0 … ) okay? So what will be the first column here? It 

will simply be 𝜆1 followed by a bunch of zeros. What about 𝑇𝑣2 now? 𝑇𝑣2 is 𝜆2𝑣2. Now 𝜆2𝑣2 if 

you look at the coordinates, coordinates will be (0 𝜆2 0 0 0 … ). So what will be the second 

column? (0 𝜆2 0 0 0 … ). So likewise you will finish everything and you will get a diagonal matrix 

here, okay? So it is a very simple and powerful idea. It is very important to write it down. So notice 

that once again 𝑇𝑣2 is 𝜆2𝑣2, okay? So what is 𝜆2𝑣2? What are the coordinates in the bases 𝑣1 to 

𝑣𝑛? This will simply give you the coordinates (0 𝜆2 0 … ), okay? So now when you write these 

coordinates down as columns, you get the matrix corresponding to 𝑇 in the basis 𝑣1 through 𝑣𝑛 

and that is simply a diagonal matrix, okay? So it is very, very easy to see why if you have distinct 

eigenvalues, you will have a basis of eigenvectors.  
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So see, I started by saying distinct eigenvalues which was sufficient to give me a basis of 

eigenvectors, okay? That's the first result. If you have a basis of eigenvectors, then you have a 

diagonal 𝑇, okay? Something has to give you a basis of eigenvectors. Distinct eigenvalues give 

me a basis of eigenvectors, okay? But that is only a sufficient condition, okay? So this is sufficient 



and not necessary. You will see later on even if you have repeated eigenvalues you can get a basis 

of eigenvectors for an operator. Simple example is the identity operator, right? You take the 

identity operator, it has only one eigenvalue 1 occurring as many times as you want. But if you 

look at the, you know, (𝐴 −  𝐼), it is all zero which means any basis is a basis of eigenvectors for 

the identity operator. Even if the eigenvalues repeat, you can get a basis of eigenvectors, okay? 

But a sufficient condition is distinct eigenvalues.  

So the crucial result is this one. If you can find a basis of eigenvectors for the linear operator, then 

in that basis 𝑇 becomes diagonal. This is a very, very, very crucial result. In any basis of 

eigenvectors, so instead of, in fact instead of saying the above you might want to think of in any 

basis of eigenvectors. This basis of eigenvectors is crucial, okay? You have an operator 𝑇. If you 

can find a basis of eigenvectors, then only matrix you have to worry about is diagonal matrix. And 

imagine how easy it is to think of the diagonal matrix, right? So I want to spend a little bit more 

time here and give you a picture of what happens when you diagonalize, right? So remember 𝐴 is 

a matrix, okay? Let us say it is diagonalizable. What is diagonalizable? Meaning it has a basis of, 

let us say it has a basis of eigenvectors, okay? Diagonalizable means there is some basis in which 

it is diagonal, okay? So that also means it has a basis of eigenvectors, right? So these are all related, 

right? So if you think about it, if the, if a linear map, linear operator becomes diagonal in some 

basis, that basis is a basis of eigenvectors, okay? So it's quite easy to see it all goes both ways, 

okay? So this is important. Suppose 𝐴 is diagonalizable. What does that mean? There is a basis of 

eigenvectors and so let us say 𝐴 is specified in matrix, given in standard basis, okay? Okay? And 

you found the basis of eigenvectors. And let us say you created a matrix 𝑆 which has the first 

eigenvector in the first column, second eigenvector in the second column so on and the nth 

eigenvector in the nth column. What are these? These are coordinates of eigenvectors in standard 

basis, okay? Is it alright? So you have a basis of eigenvectors. I make a matrix out of that, okay? 

So why do I make a matrix out of that? Because I know I can do a change of basis quite easily, 

right? So now I want to do a change of basis to this one: 𝑣1, 𝑣2, … , 𝑣𝑛. These are the eigenvectors 

I want to change to this basis. So what will happen to the matrix when I do that? I will get, so let’s 

say, so the eigenvalues corresponding to this is 𝜆1, 𝜆2, . . . , 𝜆𝑛, these are the eigenvalues, okay? So 

I have 𝐴, how do I change basis to this? What is the, there is the similarity transformation that we 

saw, right? You have to multiply by 𝑆 on the right and 𝑆−1 on the left, right? So this is the same 

linear map, same linear operator in the basis of eigenvectors, right? 𝑣1 to 𝑣𝑛, okay, right? So this 

𝑣1 to 𝑣𝑛 is basically, it will convert from standard basis to the new coordinates in terms of this 

basis… No no no, I need the other way around. So it will convert from, I am sorry, 𝑆 will convert 

from this basis 𝑣1 to 𝑣𝑛, coordinates in the basis 𝑣1 to 𝑣𝑛 to the standard basis, right? Because 

these are coordinates in the standard basis. So this will convert from, this will convert from... Let 

me call this 𝐵. This will convert from 𝐵 to standard basis, okay?  
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So think this through carefully. So you have a vector in 𝑉, it will convert to standard basis. 𝐴 is in 

standard basis. So it will give you the output and standard basis. 𝑆−1 will convert from standard 

basis to the coordinate system in the basis 𝐵. So this is the matrix corresponding to the same linear 

map in the basis 𝐵, okay? But what do I know about it? This is eigenvector basis. So what should 

be 𝑆−1𝐴𝑆? This should just be diagonal, okay? 𝜆1, 𝜆2, . . . , 𝜆𝑛, okay? Or another way to write this 

is 𝐴 becomes 𝑆 times this diagonal matrix times 𝑆−1. Is that okay? Okay? Think about how I got 

this. This is sort of important and sort of central, okay? So 𝑆, 𝜆1, 𝑆−1, okay? So notice what 

happens if I repeatedly power 𝐴. What will be 𝐴2? You can see any power of 𝐴 is simply the same 

𝑆, and 𝜆1 alone getting that power, 𝑆−1, okay? So this is what makes these eigenvalue things so 

powerful. Repeated application of 𝐴 is simply just diagonal scaling. Diagonal powering, there is 

nothing else that you need to do. There is another way in which I like to write this. We have the 

columns of 𝑆, we can also think of the rows of 𝑆−1, okay? So maybe 𝑆−1 I can write as 𝑢1
𝑇. I mean 

since we always think of column vectors. So let me write the rows as 𝑢2
𝑇, sorry, transpose here, 

like this and 𝑢𝑛
𝑇, okay? Let us think of the rows like that, okay? 𝑆−1, the rows of 𝑆−1 I am writing 

as [𝑢1
𝑇;  𝑢2

𝑇;  … ; 𝑢𝑛
𝑇], okay? Now what will happen to this product 𝐴 equals 𝑆 times a diagonal 

matrix times 𝑆−1? This is just matrix multiplication. And what did 𝜆1 do? 𝜆1 to 𝜆𝑛 when it 

multiplies 𝑆−1 it will simply scale the rows, right? So 𝜆1 will come on 𝑢1
𝑇, 𝜆2 will come on 𝑢2

𝑇 like 

that. And then you will multiply by 𝑆 on the left and the columns of 𝑆 are known to you now. This, 

that product you can write in a very clean way. So essentially you will get 𝐴 as 𝜆1𝑣1𝑢1
𝑇  +

𝜆2𝑣2𝑢2
𝑇  +  … + 𝜆𝑛𝑣𝑛𝑢𝑛

𝑇 , okay? So this is possible when you have a diagonalizable matrix? 

Remember this crucial, crucial thing is diagonalizable. When a matrix is diagonalizable, all this 



you can do, okay? Powering of the matrix becomes easy. You can write the matrix as a nice little, 

you know, outer product sum. See each of these terms is rank 1, you know, your 𝑣1𝑢1
𝑇, it is just a 

rank 1 matrix. It is scaled by 𝜆1 and it adds up. So diagonalizable matrices are so simple to describe, 

okay? So this view of a diagonalizable matrix is very important, okay? So why it’s so crucial and 

simple and easy to represent, okay? Let’s continue.  

So what I have done, so I also want to take the opportunity this week to get you, you know, get 

you used to using computational tools, numerical tools. A lot of tools out there. I'm going to show 

you three different tools, okay? So for you to, whatever you like you can pick up and use. The first 

one that I've used and I like, quite easy, it's easy to use wherever you are, is Colab. It's an offering 

from Google. Since many of you have Google GSuite accounts, your smail account for instance is 

a GSuite account, you can open Google Colab from your GSuite account and, you know, you can 

use it. It's quite useful. There are three different libraries. In fact this is shared with you from the 

sheet. If you click on, open in Colab, you'll be able to download this Python notebook that I have 

on Colab and use it if you like, okay? So there are three libraries which are quite nice. We will not 

be using too much of the other ones? But I am just pointing it out to you. Numpy, Scipy and 

Matplotlib, these are three Python libraries, you just need to import them and once you import 

them you can start working with them, okay? So in the first step I am showing here is: I am just 

generating a 10 × 10 matrix, okay? With some random numbers, okay? So 𝑛 × 𝑛 random integers 

and I'm making it symmetric. The symmetry you can ignore if you do not like, but I am making it 

symmetric because the answers will be nicer if that is so. And you can print it, you will see that 

the values are here. And then there are Numpy, the library Numpy has, you know, functions which 

give you eigenvalues. So numpy.linalg.eig() will give you the eigenvalues and the eigenvectors, 

okay? So you can print the eigenvalues. So you can see the matrix that I had before here, this nxn 

matrix of these kind of numbers all over the place, right? The matrix has so many eigenvalues and 

they are all distinct. Can you see that? How many eigenvalues? 10 of them. And they are all real, 

you know, there is a 10th degree polynomial, has all real roots and that is because I picked it as 

symmetric. We will see later on why this, all these things are true and you can see that, you know, 

the values are all here and they are all distinct. Notice they are all distinct. And this v is actually 

the collection of eigenvectors, okay? This is actually a 10 × 10 matrix. The printing and the 

formatting didn’t come out quite okay. But you can see the first row is given here, you know, the 

second row is given here. It is a 10 × 10 matrix, every column is an eigenvector. The first column 

is an eigenvector corresponding to eigenvalue, this 60.62. Second column is an eigenvector 

corresponding to 8.9, so on, okay? So you have eigenvectors, your eigenvalues, this is a 

diagonalizable matrix, okay? And then you can write down all the, you know, forms that you like, 

okay? So I have written something here to show you how this works. You know the lambdas are 

distinct, you get a diagonalizable matrix, okay? Pick up this Colab sheet, Colab notebook sheet 

and then go and, you know, change these things, fool around with this, get used to these ideas of, 

you know, just see the eigenvalues. I mean just don't think of these as abstract things that I 

described with lambda and you know, null space, and all that. You can actually work with them 

and get your hands dirty, okay? So this is very important and this I've shared with you, okay?  
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All right. So what happens when you have repeated eigenvalues, okay? So it's all great, 

diagonalizable when you have non-repeating eigenvalues, distinct eigenvalues. When you have 

repeated eigenvalues it doesn't look too bad when you have simple cases. The first case is the 

identity, right? 1, 1, 1, there you see you have three eigenvectors. I have a basis of eigenvectors. 

So this is diagonalizable, already it’s diagonal, there is nothing much to do here. Here is another 

case, okay? Once again, you know, you can see I have just added the 2 on top. When I added the 

2 on top, notice what happens. I have 3 eigenvalues again. 1, 1, 1. But when I do 𝐴 − 𝐼, what will 

happen, okay? So you can see there is only one eigenvalue. If I do A-I, supposing this is A by the 

way, you will get [0 0;  0 2] ends up coming there. And notice what this 2 has done. This 2 has 

messed up one of your eigenvectors, okay? (0 1 0) is not an eigenvector anymore. Because this, 

the null of this has only, this nullity is only 2, okay? So there are only 2 linearly independent 

eigenvectors here. The third one is not an eigenvector. So this presence of this 2 has messed it up 

a little bit for you, okay? So you get only two eigenvectors. So when you have only two 

eigenvectors, there is no other eigenvector here. So in this, when you have only two eigenvectors, 

this, you cannot diagonalize as it turns out, okay? So repeated eigenvalues can cause problems and 

you can make it, you know, the non-diagonal entry enters. So once the non-diagonal entry enters, 

you know, repeatedly squaring it, you have to take care of that entry, okay? So you cannot ignore 

that entry, it won't just directly become power of the diagonal, okay? So that power you lose, okay?  
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So you can go on and, you know, look at the next step also, you know? You can put one more 

element here 2, 3. I have added the 3 strategically here, okay? Notice what happens now. You have 

three eigenvalues, great. But, and all of them are the same, but there is only one eigenvector, okay? 

So if you look at 𝐴 − 𝐼, you will have 0 2 and then there will be the 3, so the nullity is just 1. So 

you have only one eigenvector, you've lost two of your eigenvectors and again this matrix is not 

diagonalizable. And you end up with this form, okay? So you can't do better than this form. So 

repeated eigenvalues can kill your diagonalizability, okay? Something to be watchful about, okay?  

So generally to summarize this little lecture on eigenvalues and diagonalization, eigenvalues are 

extremely useful in obtaining simple matrices. We saw that in particular if the eigenvalues are not 

repeating, they are distinct eigenvalues, that guarantees a basis of eigenvectors for me, that's very 

nice. But basis of eigenvectors results in a diagonal matrix, that’s very important. And when the 

matrix is diagonalizable, it has very simple forms, okay? So you can have a very simple nice form 

in which you can express it, okay? When eigenvalues are repeated on the other hand, you may not 

have enough eigenvectors, okay? So what do you, what can we say in general? There are these 

notions of generalized eigenvectors and eigenvalues and all that, but we may not go in that 

direction in this class, maybe later on if we have time we’ll come back to it. But for now this is 

important for us to know, okay? So how do we hunt for bases of eigenvectors and what is the best 

we can do in the general case? Supposing, what is guaranteed in the general case? Supposing it is 

non-diagonalizable, then what, okay? What is the maximum number of zeros I have to live with 

in the off-diagonal, okay? So those kinds of questions are interesting. We’ll look at it a little bit 



maybe, not in too much detail, okay? So I will stop here for this lecture. We will pick up again in 

the next one. Thank you. 
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