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So, the idea is to really understand what do we really mean by Regularization, 

regularizing a solution. Now, if we revisit the least squares problem where we had J of x 

and we had a norm of what was that we had a y minus Ax square what we solved and 

then (())(0:39) square solution you got some answer.  

Now let us modify it to incorporate a prior, incorporate a prior about x, now such a prior 

is normally very, very well known in the sense that these are generic priors, these are not 

very image specific in the sense that you are not trying to do it specifically for a certain 

class of image or something texture or phase or something this is a generic prior, what do 

we mean by that? We say that we modify J of x such that it becomes norm y minus Ax 

square plus lambda times norm Q x square. Suppose, this is called a prior and this is the 

other observation term, this is your observation term and the lambda is called a 

regularization parameter.  

Now, what is this all mean? Prior to understand what we mean by how this actually 

brings instability, how this helps improve the condition number and so on, prior to that let 



us first understand what is this Q acting on x. Now, this Q could be an identity, now Q 

typically will be some kind of smoothness, this will signify the operator itself will not be 

a smooth operator but then this whole prior, let me call not Q but rather let me say that 

the prior is typically a smoothness prior, smoothness what does what mean?  

That means locally intensities do not change rapidly, locally intensities ought to look 

somewhat similar so what is called a Markovian prior we have seen earlier also this is a 

very generic thing like any image any kind of natural image that see around you will find 

that the intensity is within a local region with some what looks similar, they are actually 

expected to look similar.  

So, this Q will actually enforce that so one form of Q could be that it could be a 

Laplacian operator which then means that it (())(2:46) the x that you are trying to 

estimate should not only fall in the observational model but will follow the prior to some 

extent depending upon lambda which is the weighting parameter because Q times x will 

give you a Laplacian of the image which is like how the second gradient is changing and 

because we are trying to minimize the effects by saying that the energy in the Laplacian 

should be low, that means you are trying to say that the image should be low and smooth.  

You can also go for Q to be identity in which case all that you will have is norm x square 

that will be like a simple Gaussian prior, that is also possible you can go for the Gaussian 

prior, you can also go for other forms of Q, you can have instead of one term you can 

have actually two terms here and one could be like norm of first derivative with respect to 

x of okay square and then plus dy second derivative with respect to square and then you 

can multiply this by lambda and then you have the observations term here, you can have 

various forms for this.  

The whole idea is that you are trying to bring in a prior, prior knowledge about x because 

you believe that even without seeing the observation model I know for a fact that my x is 

locally smooth because what you are incorporating, if you know more about x you can 

always throw all that in into this framework.  

 



Now, let us go back and do what we did before let us try to solve dou J by dou x, let us 

do dou J by dou x. Now, J itself and let us first write it down let us first expand J, if you 

expand here what do you get for J, so J of x is equal to y minus Ax the whole transpose 

into y minus Ax plus lambda Qx transpose into Qx or in other words is equal to y 

transpose minus x transpose A transpose into y minus Ax plus lambda x transpose Q 

transpose Qx.  
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Or in other words J of x is equal to from here and what do you find? You find it is y 

transpose y, first term is y transpose y, the second of course, all these are scalars, J of x is 

just a number minus 2y transpose Ax as we did before minus 2 y transpose Ax minus 2y 

transpose Ax plus x transpose A transpose Ax, this is what we had even earlier x 

transpose A transpose Ax so when they did least squares if you remember but now we 

have an additional term coming in the form of a prior which is lambda x transpose Q 

transpose Qx you see here that is what it is.  

Now, taking though J by dou x will give you minus 2 A transpose y that is 2 A transpose 

Ax now you guys are familiar with respect to what to do and this is again a symmetric 

matrix, therefore it will be Q, 2Q transpose Qx is equal to 0 or in other words your A 

transpose A plus Q transpose Q the whole into x, x has multiply from the right it is a 

vector is equal to A transpose y or in other words x hat is equal to A transpose A plus Q 

transpose Q there should be gamma here, lambda here I forgot to put that lambda.  

So, that should be lambda the regularization parameter should be there this Q transpose Q 

the whole inverse A transpose y, so now if you see the solution to compare the solution 

with the least square solution with you had let the A transpose A inverse A transpose y 

now you have an additional term coming here.  

Now this prior, this is your prior the Q is a prior Laplacian or whatever, now this prior 

improves the condition number of A transpose A, improves the condition number of A 

transpose A, if you go back to the example that I gave you which was a very, very bad 

and kind of an example where A was very ill condition you had 1, 1, 1, 1.0001 you could 

have said that now I can add some increase to the Eigen value because we know the 

Eigen value spread was very high.  

So, you could have said why not like this arbitrary add some values and sort of decrease 

for example, your lambda 1 is equal to 2 and then lambda 2 you had was 0.5 into 10 

power minus 4, now we could have said something like why not we add you know let us 

say 0.01 to both so that would have meant this would have become 2.01, this would have 

become 0.01 approximately and this and the kappa would have been 2.01 by 0.01 it 



should be roughly 200, so we could have brought down the spread drastically but it is 

adding some number.  

But the point is how do we add this numbers? When we cannot arbitrarily add something 

and we cannot simply make as my matrix table but simply arbitrary adding some entries 

but here if you see 2 A transpose A we are adding something but what we are adding is 

not all is not arbitrarily, we are bringing in a prior in the form of this matrix Q transpose 

Q multiplied by lambda this is the regularization parameter and now something sensible 

is being added to A transpose A in order to make it stable.  

So, even usually A transpose A was not invertible now even it is even letting invertibility 

to A transpose A, it is improving its condition number and so on in order to be able to 

solve for x hat that is now a regularized solution and this kind of a regularization is called 

Tikhonov-Miller regularization. In fact let me write it down at all in a kind of a better 

manner.  
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Now you have in general what is called Tikhonov-Miller regularization, the idea of 

bringing in a trade-off between so you have a cost that is of the form of an observation 

term plus some gamma times a prior where you can control it, so it is like saying so 

regularization I am also saying that if I have a lot of confidence in my observation the 



sense of my noise is very little then I would go with a low gamma because then I do not 

have to use my prior too much.  

But on the other hand if I have a very noisy observation I might want to increase my 

gamma because then I will bank more on prior and so this kind of a trade-off between 

how much is the observation do you want to use and how much of the prior they want to 

use what other little weightage you want to give to both of them in order to be able to 

write at the x hat that is reasonably acceptable, it is what is called a regularization theory 

and this is called Tikhonov-Miller regularization and this comes in direct deterministic.  

So, if you see that what we have done is really a deterministic regularization, there is a 

way to do stochastic regularization also in fact it is interesting that these two areas 

actually meet somewhere under certain conditions but stochastic is more general then a 

deterministic regularization and even this kind of regularization you can have in fact like 

different kinds of terms here for example, we have restricted ourselves L2 norm but then 

it is also very common to use an L1 norm and L1 norm is also possible to use for 

example, you can have plus when I said the gradient of x you could have used in used in 

L1 norm lambda times, the norm Dx y and then you could have used L1 norm what is 

also called a variation prior and so on.  

The idea behind using an L1 norm for the prior was that really expect the natural 

gradients, images of natural, the gradients of natural images at quickly sparse so which 

has been observed and therefore it using a sparsity on the gradient of the image with 

some prior that let say people know they plotted several natural gradients they have 

plotted and they found that the gradients of naturalness is that typically sparse and 

therefore it is we bring in something like this then this can help actually preserve your 

edges even higher in a kind of a superior manner as compared to having a prior which is a 

L2 norm something like the ones that we saw on Qx square and so on.  

But then the ability of L2 norm to keep the edges intact is not as good as the L1 norm but 

there are optimization algorithms that one can use in order to solve an L2, L1 

combination, lasso is one such thing it uses what is called a ADMM, ADMM method we 

will not get actually go to these features of these methods but the point is once you fail 



we often fail the cost function then there are these optimization methods available out 

there which can directly follow it in order to be able to solve these problems, this is called 

Tikhonov-Miller regularization.  
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And I just wanted to wanted to say that you should be able to appreciate the fact that the 

prior information that enters in a certain form in order to be able to improve the stability 

of your final solution, that is in fact the goal after showing of this kind of regularization 

theory, we will as a follow-up we will see what is stochastic regularization and try to see 

what is the relation it has with respect to a deterministic regularization.  


