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So, we saw already what is linear least square solution or what is called LLS, linear least 

square solution. And which we saw turned out to be x hat is equal to A transpose A inverse A 

transpose y. And in order to relate it to let us say deblurring problem where you can think of 

A as your volume matrix where y is equal to H x plus n, and because of those noise it takes 

you away from this span. So, y is no longer in this span of the column of H. And that for it 

one would then, would not want to ask for the solution x such that the norm of y minus Hx 

square, norm y minus Hx square is small as possible. 

In which case your x hat, then it will then kind of turn out to be h transpose whole inverse h 

transpose y. That is one way to sort of see how this least square solution will be useful for 

kind of deblurring problem. But then such a solution is not really the most diligent one to 

arrive at, we will see how to incorporate for higher and so on. But then I just wanted to 

indicate that if you have an observation for which a solution does not exist, then what one 

could do is solve thoroughly least square solution. Now the second position of Hadamard if 

you recollect, that was about uniqueness. Uniqueness in the sense that if a solution exist, it 

ought to be unique. This is what it has said. 



Now what if, let us say what if you had a situation where let us say y is equal to A x and or 

let us say A x equal to y which you would even write it as let us say A x equal to y and you 

want to solve for x where this is again let us say m cross n, this is m cross 1 and this is m 

cross 1. What if let us say m is less than and, so we have an underdetermined, system of 

equations and we know that if we have a situation like that, you could end up, you could have 

multiple solutions for a given y multiple solutions for a given y. 

That means that will be multiple x’s which will all work for, work to let us say give you this 

m y. In such a case, one can of course know what can now say, well, in which case I cannot 

solve this problem because there is no unique x. Although I know that a solution exists, but 

then there is no unique x that will take me to that y. There are so many x’s, which one to 

pick? 

So, what one could do is one could look for this L1 norm for x. So, you could kind of look for 

that x, which has the smallest L1 norm. This is something sparsity and so on, this is useful in 

compressor sensing kind of application. But the more easy thing to ask is what is called the 

min-norm solution. That means find that x from all the x’s that satisfy x equal to y, find the 

one that has the smallest norm. This should be smallest could be that x which has the smallest 

norm. This is called really the mid-norm solution. 
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Now formally to kind of write this, write what we can say is we can look up, so we can say 

that norm is equal to saying that minimize, so mid-norm solution looks like this. Minimize 

norm x square because we want this to be minimum subject to the condition that subject to A 



x equal to y. Because in this case we can satisfy this n equality, not an equality but inequality. 

Because you know that the solution exist. Therefore, among the x’s we want to pick the one 

that has the smallest norm such that A x that gives you y exactly, not like the least square 

solution where A x was equal to some y hat, it was not equal to y. 

In this case, A x will be equal to y. Now same with in that kind of, now we are now using a 

Lagrange multiplier, then what you get is you can write this as J of x equal to x transpose x 

plus a Lagrange multiplier and which you can use here, which is like lambda transpose A x 

minus y. So, the whole thing boils down to using Lagrange multiplier and it becomes like 

this. Now you can look at doh J by doh x, that in this case will be 2x plus say y transpose A x, 

lambda transpose A x is A transpose lambda as I already said. 

Even third term of course does not even involve x, therefore this is 0. Or what you can say is 

2x equal to minus A transpose lambda, 2x equal to minus A transpose lambda. Now if you try 

doh J by doh lambda, that will give you simply A x minus y equal 0 because that will be act 

on this term that will be A x minus y equal to 0. Or in other words, A x equal to y. Now if 

you substitute for x from this equation 1, then you will get A into x is half minus A transpose 

lambda, that is x from equation 1, this is equal to y. 

Or you can say minus A A transpose lambda is equal to 2y. Or in other words, lambda is you 

can say minus 2 A A transpose. Lambda is of course not a vector here. Please remember 

lambda is a vector, so can only, so multiplying A A transpose multiplying the vector from the 

left, that is why we have A A transpose inverse minus 2 A A transpose inverse y. Now if this 

is the optimal lambda, put that in here to get your optimal x hat. 

Therefore, you will get 2x hat is equal to minus A transpose times, 2x hat is equal to minus A 

transpose times lambda. So, lambda is minus 2 into A A transpose the whole inverse y. This 2 

and 2 will cancel out as minus and minus will cancel out. Therefore, it turns out that x hat is 

equal to A transpose into A A transpose the whole inverse y. So, carefully if you operate, so 

this is your mid-norm solution. This is your mid-norm solution for x. Clearly, if you operate 

A on this x, on this estimate of x, let us operate. 
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So, A x hat if you do, you get A into x hat itself. As you found there was A A transpose the 

whole inverse into A transpose into A A transpose the whole inverse into y. But A A 

transpose A A transpose inverse is equal to identity. Therefore, this is equal to y, therefore 

this x hat does satisfy this condition that A x should be equal to 1. So, solution does exist and 

then among the solution because there are multiple number of them, we are picking the one 

that has the smallest norm. 

Therefore, your min-norm solution is really this. Now, now if it so happens that let us say x 

hat is rank deficient, if A is rank deficient, if A is rank deficient, that is A A transpose is not 

invertible, then one can compute the pseudo inverse and one can compute the pseudo inverse 

of A using SVD. We have already seen what this SVD is like. So, we can compute the 

pseudo inverse of A using SVD which then means that given your A which m cross n, you 

can flick that matrix U which is m cross m sigma U sigma which is m cross m V transpose 

which is m cross m. 

Therefore, A pseudo inverse which is now, it is typically indicated as A plus. So, A plus will 

be m cross m, this will be equal to V sigma plus, this should be m cross m and then U 

transpose which would be, so this is n cross m, this is m cross m, where let us write down 

what we mean by sigma plus and so on. Where sigma plus of I comma i, is equal to 1 by 

sigma of I comma i. We get this sigma of I comma i, with sigma I comma i is not 0. Else else 

0 otherwise. 



And that would kind of that give you the pseudo inverse of A and if you operate this A plus 

and now if you apply this A plus, so the x hat, the min-norm solution will simply be A plus y, 

A plus acting on y, where A y is the observation. Now this is of course provided that A is, if 

A was deficient in rank. If not, of course, if not, then you can directly do A A transpose 

inverse and then while you are getting the min-norm solution. 

This is also min-norm by the way. It is also min-norm solution and the same A inverse, let me 

also mention that now if you go back to your least square solution, we had A transpose A. 

And if A transpose, you get now, you can even use this result for the min-norm solution, the 

min-norm result, the pseudo inverse result. 
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Result for min-norm can also be used for least squares, can also be used for least squares 

when the columns of A A are not linearly independent, not linearly independent. What this 

means is that A transpose A is not invertible in least squares. A transpose A is not invertible 

in least squares. If this happens, then it means that, that means that the columns of A are not 

linearly independent. 

Then it means that if you try to do least squares, then there is not just one x, there are several 

x’s that can kind of give you an x hat which when acted upon by A will give you A x hat 

which is equal to y hat. And that y hat will be as close as possible y in the orthogonal sense. 

So, that is the error between y and y hat is going to be small. But then among the x’s that will 

take you there if you use the min-norm idea or if you use the pseudo inverse, then it will give 

you the x that has the smallest norm. 



Even A transpose A is not invertible, of A are not linearly invertible, the columns of A are 

not linearly, that is A transpose A is not invertible. So, so so the solution, the min-norm, so 

then such a solution is called min-norm least square solution solution is then given by is then 

given by A pseudo inverse y. So, it is called the min-norm least square. That mid-norm least 

squares. So, this is A transpose A is not really invertible. 

Now these now these two conditions are over as far as we can see. Now what about 

Hadamard’s third condition? Now again min-norm is one way out. If you do not, if the 

weakness is an issue, least square solution is one way out. Let us say existence is an issue and 

suppose if somebody told you that let us say I have an operator or I have the metrics that is 

both one to one I want to, in which case if you have an A which is invertible but you still feel 

that Hadamard had something else to say, which was his condition number 3. 

So, coming to condition number 3 of Hadamard and what he said was he made the right 

dependence of solution or the solution should depend continuously, solution x should depend 

continuously on the observation J, should depend continuously on J, should depend 

continuously on J. Now this is what actually plays the very very important role, where like I 

said before if G 1, means for G 1 you get a solution f 1 because of the fact that it is invertible, 

A is invertible. 

And G 2 gives you f 2. If G 1 and G 2 are very close then f 1 and f 2, we would ideally want 

them to be very close. Whether they are close or not depends upon certainly the problem. So, 

we want to examine the numerical stability of the matrix A, numerical stability, stability 

fully. So, we are interested in examining what we call is numerical stability of matrix A. So, 

you are trying to solve A x equal to y and we are saying that y 1, if I have y 1, then my 

solution is A inverse y 1 which is x 1. And if I give y 2, then my solution is A inverse y 2 

which is x 2. 

We are saying that if y 1 and y 2 are very close, I expect x 1 and x 2 to be very close. But are 

they, will they turn out to be close or not depends upon the numerical stability at A. So, we 

would like to examine this notion in more detail. And in order to understand that we have to 

talk about norm of an operator and so on which is what we will see next. 
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Let us first talk about a bounded linear operator and then we will kind of see, come down to 

the matrix. Let us talk about the general notion of a bounded linear operator. A linear 

operator L is said to be bounded bounded if there exist a real number C greater than or equal 

to 0 such that for all x belonging to the domain of L, norm L x is less than or equal to C times 

norm x. This is the domain of L. 

This implies that C is greater than or equal to norm L x by norm x. The smallest possible C, 

so the smallest possible C that satisfies this condition is called the norm of the smallest 

possible C is the supremum of the RHS of 2, let us say equation 2. Because this is 2 taken 

over V of L minus the 0 vector. Because since we are dividing by norm x. And this smallest 

value this smallest value is called the norm of L norm of L and is denoted by and is denoted 

by norm L norm L. 
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That is norm of L is equal to supermom over all x belong to the domain L, x naught equal to 

0 of the quantity which is given as norm L x by norm x. Now when we write supermom, we 

should understand the supermom is not the same as maximum that is, slightly more kind of 

general idea. So, what do we mean by for those of you, one thing what supermom is or what 

is called the least upper bound? 

Is called the least upper bound. So, this is simply aside for those of you, so given, for 

example, given a set E, within a set E its supermom is defined as a is equal to sup of E where 

a is the smallest smallest number such that a is greater than or equal to x for all x in E, for all 

x belonging to E. Important to note that the, the important thing to note is that a is called the 

Lub or supermom or whatever, least upper bound and a need not belong to set E. 

Whereas, whenever you talk about maximum, it comes from the set. When it is a maximum 

of the set, then you actually pick a number that actually belongs to that set. Whereas whereas 

when you talk about supermom, it does not even have to belong to that set. For example, if 

you take E to be the slow set from the left and open it from the right, then the super V is 

equal to 1 and you see that 1 is not in the set E. 

But then we know that 1 is the smallest number that is greater than or equal to all numbers in 

the set E. But then set E does not include 1 by itself because because this is an open interval. 

That is the notion of a supermom. Now using this notion we would like to understand how to 

now talk about the norm of the matrix. Because this is a definition for norm of linear operator 



and therefore, one would like to use this kind of definition in order to be able to talk about 

norm of a matrix. 

 

 

 

 

 


