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And, next we will see what is the equivalence between the asymptotic stability and

exponential stability particularly for the LTI systems. So, when all the eigenvalues of the

matrix A have strictly negative real parts, all entries of the e to the power A t would converge

to 0 exponentially fast. 



And therefore, the norm of that exponential matrix converges to 0 exponentially fast for every

matrix norm, you can take from 1 norm, 2 norm, infinite norm or the frobenius norm. Which

also meaning to say that there exist two positive scalars such that, the norm of this matrix is

always less than equal to c in to e to the power minus lambda t for all t belonging to the R. 

So in fact, you can also see this equivalence from a logical proof also, since we know that the

asymptotic stability particularly for LTI system because we know at the outside that for linear

systems, the response would be exponential in nature. So, even if it is decaying or

diminishing asymptotically towards to 0 it will decay exponentially.

 So, we have this asymptotic and exponential stability equivalent particularly for LTI system.

So, you can see a technical proof of also of this that for a sub multiplicative norm if I compute

the norm of the signal x which is given by this e to the power A t minus t naught for some

initial condition x naught. 

So, the norm of this quantity would always be less than equal to the multiplication of their

individual norm, right and this one we can replace from here by replacing by that t minus t

not their exist two scalar c and lambda and finally, we obtained this which is basically the

definition of the exponentially stability for LTI systems. So, these two definitions are

equivalent for LTI systems.

So, the next questions arises whether these two definitions are also equivalent for the time

varying systems or linear time varying systems which is not true. We will see a certain a

couple of examples later in the lecture that these conditions do not generalized to time

varying systems. Meaning to say that one can find matrix valued signals A of t that are

stability matrices for every fixed t greater than equal to 0, but the system itself is not stable.

Meaning to say, let say I have A of t consider a one of particular example a 1 1 of t, a 1 2 of t,

a 2 1 of t, a 2 2 of t ok. Now, at a fix time t let see at time t is equal to let consider three

different time instance t 1 t 2 and t 3.



So, if I compute the matrices at these three different time the matrix A might be a stable

matrix meaning to say the all the eigenvalues of this matrices, of this matrix computed at

three different times are stable, but the system itself is not stable, ok. So, we in that case we

cannot say these two definitions are equivalent for the LTI system, but we will see more

concretely when we will consider a couple of examples.
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So, this is the key important theorem in the analysis of stability for linear system, the

Lyapunov stability theorem provides an alternative condition to check whether or not the

continuous time homogeneous linear time invariant system is asymptotically stable. So, the

first condition or the first test we saw that you compute that given the system. You compute

the solution; you compute the solution basically you compute state transition matrix and then



seeing the solution you could see whether the state or the output signal is bounded or not

right, all right

Second test is the eigenvalue test where given the system only for LTI system; this eigenvalue

test is not valid for the ltv systems; so, if we have an LTI systems you can do an eigenvalue

test. But, even if do not want to compute the eigenvalues this Lyapunov stability theorem

provides a test, whether you need to ensure the existence of some matrix which in fact give

you the test for the stability. So, here we do not need to compute the solution, we do not need

to compute the eigenvalues, but we will see some other different criteria which is this one.
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So, the following conditions are equivalent, the system homogeneous CLTI is a

asymptotically stable, which is equivalent to saying that the system is exponentially stable.



Which is again equivalent to staying that all the eigenvalues of a have strictly negative real

parts. The fourth statement reach for every symmetric positive definite matrix. 

So, symmetric matrix we know if we talk about the matrix Q that the Q transport should be

equal to Q, positive definite that the quadratic form with the weight matrix Q is greater than

0. There exist a unique solution P to the following equation which is also known as the

Lyapnov equation that is a transpose P plus P into A is equal to minus Q, more over P is

symmetric and positive definite.

Which is equivalent to saying that there exist a symmetric positive definite matrix P for

which the following Lyapnov matrix in a equality holds, that A transpose P plus P into A is

less than or 0. So, here LMI is basically linear matrix in equality not the Lyapnov matrix in

equality, this LMI term has been generally used for linear matrix in equality, right. 

So, the next we would see the proof of this important theorem because this like we are seeing

in the statement of this theorem, that here we without even computing the solution or the

eigenvalues just by saying the existence of the symmetric positive definite matrix P we can

determine the stability we can comment on the stability of the system right.

So, since there are five statements this is how we would going to proceed to prove all these

five statements. So, when we say that the statement 1 is equivalent to the statement 2, we

mean to say that 1 implies 2 meaning to say if 1 is true then 2 is true right also the other way

round then if the statement 2 is true then it implies that the statement 1 is also true.

So, when these two implications are satisfied we say which is equivalent to say that 1 is

equivalent to 2, both ways implication is being satisfied. So, 1 is equivalent to 2 that is

exponentially stable and asymptotically stable, this equivalence we have already seen for the

LTI system that the exponential stable system and their asymptotically stable system is

basically the same thing.

Now, by the eigenvalue test, we can have the equivalence between the second statement and

the third statement that all the eigenvalues of A have strictly do not forget this part strictly



there should not be any eigenvalue with 0 real part ok, then strictly negative real part right.

So, this three equivalence we have already seen.

Now, the equivalence which we will prove in the next couple of minutes that 2 implies 4 and

5 implies 2, basically we wont to closer loop. Now, the 4 implies 5 is quite trivial mean to say

that if 4 is true. If the statement 4 is true then the statement 5 is also true and this it could be

done by choosing Q as an identity matrix. Once you put Q as identity matrix for the same

dimension in the state in the Lyapnov equation you would directly obtain this LMI. So, 4 to 5

is pretty much straight forward. So, the next you would see 2 implies 4 and 5 implies 2.
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So, first we will see that 2 implies 4 meaning to say that if the system is exponentially stable

then given a symmetric positive definite matrix Q, this symmetric Q is given then the

Lyapnov equation is satisfied for some P which is symmetric and positive definite, ok. So, in



this implication it is already assumed that the system is stable is asymptotically stable. So, to

start with the proof we claim that the unique solution to the Lyapnov equation is given by

this.

 P is a definite integral from 0 to infinity given by this quadratic form A to the power A

transpose t into this matrix Q which is given the matrix A is also given in. So, basically you

can compute matrix P in to A to the power At dt. So, to verify this; so, we are claiming that

this is a solution. 

So, to verify that this is actually a solution to the Lyapnov equation being symmetric and

positive definite we need four steps to be proved. These four steps that the integral defined in

the in this equation 2 is well defined that is it can be computed there is it has a finite value.

The matrix P solves the equation Lyapunov equation, the matrix P is symmetric and positive

definite and finally, that there does not exist any other matrix, then defined by this which

solves the Lyapnov equation ok, because this is a value, this is an improper integral from 0 to

infinity.
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So, let see the well defined first. So, this is a consequence of the fact the system is

exponentially stable. So, we if it is already given that the system is stable; so, now, if you see

that the system is stable meaning to say all the eigenvalues are on the left hand side strictly,

on the left hand side. So, this exponential will decay this exponential will indicate. So, finally,

this entire part would go towards to 0.

So, this integrand would as t tends to infinity would go towards to 0. So, there exist a value,

you can actually compute the value. If this integrand with t tending to infinity is approaching

towards to infinity, then you could not compute any value and the value would be infinity.

Basically, you are computing the area under this signal, ok. So, because of this that these are

exponential stable or both these integral would die out as t tends to infinity the integral is

absolutely convergent. So, we would have a certain value second that this equation solves the



Lyapnov equation. So, this you can verify by putting this P into the Lyapnov equation itself

and then verifying whether the left hand side is equal to the right inside. 

So, in the left hand side we put this P which is given by A transpose P plus P into A. So, I put

this P integral from 0 to infinity here. So, since this matrix is A transpose and A are time in

variant matrices, I could take inside the integral without affecting the value of the integral, ok.

So, this finally, I would obtained, but on the other hand if I compute the derivative of this

quadratic form if I take the derivative of this quadratic form this would come equal to this one

which is nothing but equal to this thing, ok. So, I can replace this whole term by the

derivative of this quadratic form, ok. 

So, therefore, this I can write the left hand side of the Lyapnov equation I can write the

integral 0 to infinity this part, because this part has been replaced by this derivative of the

quadratic form. Hence, this you can compute by taking the value at 0 by computing the value

at infinity. So, this I can read by limit t tends to infinity of this part minus at t is equal to 0,

ok.

So, see now that we already know that the system is asymptotically stable. So, I know that

these exponential as t tends to infinity would go towards to 0. So, this part would entirely

would become 0, right and this part since e to the power A transpose 0 is identity. So, finally,

this one would become minus of Q. So, left hand by putting this P on to the left hand side of

the Lyapunov equation, I actually obtain the right hand side meaning to say, that this P

satisfies the Lyapnov equation.
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The third point is about the symmetric and positive definite. So, first you will see the

symmetric we know the definition of the symmetric matrix that the transpose of that matrix

should be equal to the matrix itself. So, first of all we take the transpose of that matrix P

transpose. Now, carry forward it to the integral inside we can compute the, we can simplify

the transpose in this manner. So, by using the transpose property it would become e to the

power A t transpose this term would become first Q, Q transpose and the first time would be

go into last to the transpose, ok. So, finally, we would have e to the power A transpose t Q is

a given symmetric matrix.

So, we know that Q transpose is equal to Q, I can replace this Q transpose by Q and the A

transpose, transpose would become would nullify right. So, I can write this e to the power A t.

So, if you notice that this in fact, become equal to P. So, we have verified that the P is a

symmetric matrix now, for the positive definiteness we define an arbitrary vector z of the



same dimension n is given by z transpose P z. Again by putting the P matrix, the P integral

defined earlier into this part we obtained this.

And finally, I replace this part z transpose e to the power A transpose to t or to be precisely e

to the power A t into z by another signal w t. So, see if you take the transpose, if you take the

w transpose you would obtain z transpose e to the power A transpose t which is this part. So,

I can write this as w transpose Q into w, ok.
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So, we know that Q is already a positive definite matrix. If Q is a positive definite matrix then

I know that this part would be greater than or equal to 0, we will come on to this part will

equal to 0 we know for positive definiteness the equal to parts should not be 0. Since the z

could be any arbitrary vector. So, we are not sure whether it would be greater than only

greater than equal to 0 or greater than equal to 0; so, let us see. 



So, we know that it would be 0 that z transport P z would be equal to 0, if this part is equal to

0, right. Now, note is here that this part, this is a quadratic form that this part would go to 0

only if this w t signal is 0, because Q is a positive definite matrix which can never become

equal to 0. w t equal meaning to say e to the power A t z is equal to 0 and e to the power A t

is a nonsingular matrix already. So, this will become 0, if and only if z is equal to 0 right from

which one conclude that is equal to 0, because e to the power a t singular therefore, P would

always be positive definite matrix, ok.
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Now, the fourth one is the uniqueness property which is meaning to say that there exist only

that P and does not exist any other P. So, let us assume that there exist another solution given

by P bar which also satisfies the Lyapnov equation, and this P bar is different than the P



defined in the equation two. So, here we write the P in the Lyapnov equation and the P bar

which was satisfy the Lyapnov equation for the same Q.

So, if we subtract these 2 equations, we obtained this equation A transpose P minus P bar plus

P minus P bar into A is equal to 0 because a Q matrix remains the same. Now, if I multiply

this equation pre-multiplying and post-multiplying by e to the power A transpose t and e to

the power A t, I can do this because both these matrices are nonsingular matrices, ok.

So, I can pre multiply by the e to the power A transposes t and post multiply by e to the power

A t, the right hand side would remain as it is equal to 0, ok. Now, if you pay a close attention

to this one, it is actually the derivative of the this part, of this quadratic form e to the power A

transpose t P minus P bar in to A to the power A t which becomes equal to this. So, what it

says that the derivative of this one is equal to 0.

So, meaning to say that this term would either be equal to 0 or would be equal to some

constant value and this is what it seems that must remain constant for all time, but because of

stability this quantity must converge to 0, because A is having all the eigenvalues on the left

hand side.

So, this part or these two parts would go towards to 0 as t tends to infinity, meaning to say

that this form would become equal to 0 only if this weight matrix become equal to 0, right. It

is meaning to say that P minus P bar equal to 0 meaning to say P would always be equal to P

bar. So, there does not exist any other matrix than P. Certainly, for different Q there would be

different P, but for the same Q there could not be two different P, this is how we defined the

uniqueness, ok.


