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So, hello everyone. So, today we will see the lecture 5 of the week 1. So, in the last lecture we

discussed that what is the equivalent representation problem, we discussed the notion of the

equivalent representation. We also discussed the notion of algebraic equivalence, the

zero-state equivalence and also the relationship between the zero-state equivalence and

algebra equivalent. One of the most important result what we had discussed that time varying

state matrix was transformed into a constant matrix right.
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So, today we will discuss the realization problem of the, first we will, again we will discuss

the about the LTI systems and then we will move towards to the LTV case. So, first we will

see that how do you differ, what is the problem statement for the realization. So, we know

that every LTI system can be described by the input output description given by this one,

which is also the zero state response. 

And if the system is lumped, by a lumped I mean to say that the system is having a finite set

of state vectors variables as well by in input state output description which is given by this

one. Meaning to say that this representation or when we represented as y of t as the

convolution on g t in to u t. It can also be used to describe a distributed system right, but if we

are having alarm system then it can be represented also by the state space equation ok.
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So, we also know that if the state equation is known, the transforming function matrix can be

computed as this one, and this we also had seen in the last lecture about their equivalence, in

the algebraic equivalence, in the zero state equivalence ok. Now this realization problem

deals with the converse problem.

So, we know of n, in fact, we had seen that the computed transfer function matrix is unique in

the sense. So, try to recall that in the last lecture we discussed to, at least two different

representation of the same system right, but the transfer function was same for both the

representation, meaning to say that there the transfer function is unique, but not the state

space representation. 

So, this realization problem deals with the statement that find a state space equation from a

given transfer function ok. Then let us say some G hat of s is given to us, now we know that



G hat is a unique description of the system. Now for the unique description we need to

identify one state space representation and there could be infinite number of state space

representation. So, we need to address the problem of computing the state space equation

from a given transfer matrix.

(Refer Slide Time: 03:29)

So, let us define it formally that a transfer function matrix G hat of xi. So, I use this variables

xi just to denote that it is this definition is valid for the continuous time system and for the

discrete time system. So, in the continuous time we go with the Laplace transform or the

Laplace operator s and in the discrete time system we go with the z transform operator by z,

that the transfer function matrix G hat is said to be realizable whenever there exists a finite

dimensional state equation or simply the pair ABCD such that this equation is satisfied, and

we call this ABCD is the realization of G hat of s or xi ok. 



So, we have already discussed that G hat of xi could have infinite number of realization in the

sense that there could be infinite number of the pair ABCD. So, this problem is fairly

complex that among all those representation which representation is to choose or how to

ensure that there exists a representation right. So, in this topic we will study the realizability

condition and we compute only one realization. So, given a transfer function matrix we will

study those conditions under which we can say that this transfer function is realizable and

with respect to that we compute one adhoc realization ok.
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So, this is the most important result that a transfer function matrix G hat is realizable, if and

only if G hat of s is a proper rational matrix. So, in fact, this point we also mentioned in the

beginning of this week 1 when we were discussing about the causality and all. So, the proof



of this result is quite long and we will give the proof in two different part which first we call

the necessary part and the sufficient part. 

So, in the necessary part that if G hat is realizable then G hat is a proper rational matrix,

basically we also denoted by this symbol. Meaning to say that the realizability of G hat of s

implies that G hat is a proper rational matrix ok. The sufficient part which is the converse of

this part that if G hat of s is a proper rational matrix then your G hat of s is realizable. If this

necessary insufficient condition is satisfied then the realizability of G hat of s is basically

equivalent to saying that G hat is a proper rational matrix. 
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So, let us see the first the necessary part. So, we already assumed that G hat of s is realizable.

So, if g hat is realizable then we can write it by this part ok. Let us denote this G hat

underscore sp, where I have not included the d matrix. So, without the d matrix we know that



see that they defined the transfer function ok, and this transfer function we call it the sp. And

we know that I can define this sI my, the inverse of sI minus A by the ratio of adjoint sI minus

A transpose divided by the determinant of sI minus A. Since it is a polynomial I can commute

ok.

Now, note here that if A is a n cross n matrix then the determinant of sI minus A would have

the degree of the characteristic polynomial equal to n right. We also discuss in the in one of

the previous lecture that the degree of this adjoint of sI minus A would be a at most s minus

1, sorry n minus 1. 

So, we know that this part see sI minus A inverse B is a strictly proper part this is the reason

we defined it sp which implies the strictly proper part. Now if the d matrix is a nonzero

matrix then this whole part is basically the proper. So, this shows the proof of the necessary

part that if G hat is realizable, which we started from here then G hat of s is a proper rational

matrix, and we arrived to the conclusion that G hat is a proper rational matrix. The sufficient

part which is the converse. 
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So, we show the converse that is if G hat is a q cross p proper rational matrix, then there

exists a realization, meaning to say if there exists a realization then that transfer function is

realizable. So, let us see so, first of all we decompose the transfer function G hat has the

summation of G hat infinity plus the strictly proper part of the G hat and we know that this G

hat is basically nothing, but the d matrix ok.

Let define this polynomial this d of s with whose order or degree is r, which is basically the

least common denominator of all the entries of this strictly proper part of the transfer function

ok. Then I can express this Gsp as the ratio of 1 by d s, because d of s is a polynomial and this

is basically a matrix which is n in n the function N of s, and this N of s is basically given by

this long part where we have r number of constant matrices of dimension q cross p ok.



In all these s are the scalars. So, let us say if you want to visualize, let us say I have a 2 by 2

system ok. So, this 2 by 2 system I can represent by y 1 y 2 equal, let us say g 1 1, g 1 2, g 2 1

and g 2 2. Let us say we have this 2 by 2 system and these or this g 1 1, g 1 2, g 2 1, in g 2 2

add that transfer function basically the ratio of polynomials.

Now, this I can express this, let us denote this gi gi j, let us say some polynomial j and some

denominator polynomial i j of s. So, this after taking the LCD of all the elements of this

transfer function matrix I can express this transfer function matrix is let us say some LCD of

this matrix 1 by d s then this would be a matrix in the sense n 1 1 of s n 1 2 of s like this.

So, the same has been expressed in this one ok, because all this n ij would be the function of s

and I can take the N matrix common and finally, all this N I s would be the constant matrix of

dimension q cross p ok.
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So, now we give a set of equation given by this A matrix this B matrix this C matrix in this D

matrix and we claim that this set of equations is a realization of the transfer function G hat of

s, where all these Ip are the identity matrix of dimension B. All these 0s are also the matrices

having its elements all its elements 0, this A matrix is having a dimension of rp into rp ok. 

So, note that here its that what the point what we had raised earlier that there could be

infinitely number of state space representation, and it is not necessary that all these

representations would be having the same dimension right. 

So, here we would be having this the A matrix or dimension r p into r p, b r p into r p and c q

into r p in overall it would give me the transfer function of dimension q cross p. You can

verify by yourself the these dimension of these matrices, because we have r number of



elements of p matrices which are the block matrices. So, in overall it will give me this

dimension ok.

So, now we need to show that this set of, this state space representation is a realization; is a

realization. If we are able to show this, meaning to say that G hat of s is realizable transfer

function.
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So, let us see, so first of all we define this Z as Z 1 2 Z r equal to s the inverse of sI minus A

into p where all these Zi are the p cross p matrix. So, if all these Z is are the p cross p matrix,

the dimension of this matrix capital Z would be rp into p because we have r number of

elements of matrices p cross p. 



So, if I write that transfer function of the state space representation what we had introduced

earlier, which in general way I can represent by this is given by this, where I have replaced all

this sI minus A inverse B by there Z 1 to Z r ok, you can write it more explicitly to finally,

arrive to this equation right. This equation I can also write it sI minus A into Z is equal to B

by taking this part or pre multiplying both side by sI minus A ok, sI minus A Z into B or s Z is

equal to AZ plus B. 
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So, let us see this part s Z is equal to A Z plus B, where now I have explicitly written this Z

matrix starting from Z 1 to Z r. We have this A matrix into Z plus B matrix of the state space

equation what we had introduced. So, see from starting from the second element to the last

element, so if you notice we have Z 2 is equal to or s into Z 2 is equivalent to Ip into Z 1.



So, this is this one that s times Z 2 is equal to Z 1 if we see the third element which is s times

Z 3 is equal to I p times Z 2 where I is an identity matrix and so forth and so on, if we keep on

continuing it could be s into Zr is equal to Ip times Zr minus 1 ok, because all these elements

are 0.

Now, from here we compute this, we can write Z 2 s Z 1 by s Z 3 is Z 2 Z 2 by s and then

replacing Z 2 by Z 1 by s we would get, we can parameterize all these Z in terms of Z and the

degrees of s. And after replacing all this Z putting all these Zs into the first equation which is

s times Z 1 is equal to this into this plus this into this plus Ip. 

This is the part in replacing all this Z 2 2 Zr by these equations; in fact, we have

parameterized this whole equation in terms of Z 1 only. You can write this equation by

yourself as well to visualize that how we have arrived to this part. 
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Now, using the definition of d of s what we have introduced, I can write this last part. If you

pay attention to this one this part, so this part I am trying to simplify it in the next line by this

one. So, I can write it is the ratio of the polynomial d of s divided by the s of power r minus 1

into Z 1 is equal to Ip ok. So, once I have defined Z 1 which is s to the power r minus 1

divided by d of s into Ip, I can compute all these the remaining Z s which were parameterize

in terms of Z 1 ok. Now substituting all these Z s into the original equation, into the original

equation if you see here this part from where we started.

So, after putting here I get the original transfer function of the state space system. Meaning to

say that the state, the set of equations what we have introduced is one of the realization of the

transfer function ok, this proves the sufficient part. So, we are now sure that the realization of



the G of hat G hat of s is basically equivalent to saying the G hat of s should be a proper

rational matrix ok.
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Moving on to the LTV systems. So, we know that we cannot use the Laplace transform tool,

for the two basic reasons what we have introduced and the one of the previous lectures. So,

the input-output description is given by this and the input state output state description is

given by this. Again recalling the same problem that if the state equation is available the

impulse response can be computed from this one, where this part is basically the state

transition matrix, the solution of the state transition matrix in terms of the fundamental matrix

ok.

Again we want to answer the reverse problem that given a transfer function, I want to

compute the pair ABCD; the all that time varying parameters. 
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So, this is the result for the LTV system that given A q cross p impulse response matrix G t

comma tau, we say that it is realizable if an only if that matrix can be decomposed by this

where M N D are respectively the matrices of appropriate dimensions. Now, that this result

says that if any transfer function matrix is for the transfer or the impulse response matrix. I

cannot use the word transfer function, because for the LTV systems we do not have the

transfer functions. 

So, for given impulse response matrix Gt comma tau, we say there exists a ABCD matrices, a

the given response matrix can be decomposed into this part. Again we will be doing this the

proof of this result into two parts; one is the necessary part another is a sufficiency part that if

Gt comma tau is realizable, then there exist a realization that satisfy this one, this was the idea

of reducing here.



Because if it is realizable or the state equation is real available then I can express the impulse

response matrix by using the parameters of that state equation, meaning to say that there

exists some parameters. So, there exist a realization that satisfies this equation, where X is the

fundamental metrics and the sufficiency is speaks about that if G t comma tau can be

decomposed as this then the response matrix is realizable, both ways; this way and similarly

this way ok.
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So, let us see the proof of the necessary part. So, this proof is pretty much straightforward that

pay attention to here, this transfer the sorry the response matrix. So, if we denote this CX by

M in this part is N right. So, we have in fact, already decomposed the transfer function in

terms of the required result, meaning to say that Gt comma tau is realizable then there exists a

real realization they satisfy this part. 



So, M t and N tau we can replace this and this satisfy the necessary part of the theory ok. The

sufficiency part that if G; the impulse response matrix is decomposed as mentioned above

then it is realizable, we have the proof of this one that if Gt comma tau can be decomposed as

above then the n dimensional state equation is given by this ok.

So, here we are introducing a state space representation of the time varying matrix. Note that

the state matrix is 0, there is no matrix which is being multiplied by the state variable. So, we

have x dot is equal to N of t into u and the output equation is given by M of t into x plus D of

t into u right. So, if we compute the fundamental matrix of this one, we already know that the

fundamental matrix give is a identity matrix right. 

And thus the impulse response, if I compute the impulse response of this one is given by

finally, the impulse response matrix, which proves the sufficiency part of this theorem,

meaning to say that decomposing. So, if we go to the result that decomposing the given

impulse response matrix into this form, is equivalent to saying that the response matrix is

realizable, meaning to say that there exists the pair ABCD ok. So, here we conclude the

theoretical part of the first week. So, in the next lecture we will see the, to do some tutorial

problems. 


