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Given a continuous-time LTI system:
i= Az + Bu, y=Cz

the linear quadratic requlation (LQR) problem consists of finding the control
signal u(f) that makes the following criterion as small as possible:
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So, today we will start with the problem of Linear Quadratic Regulator. So, far we have
discussed the problem of state feedback design by for the single variable case and also for the
multi variable case. We have also seen the robust controller design problem also. So,

the main idea in the problems whatever we have discussed lies in this having the set of desired

eigen values.



So, if you recall with whether we have taken the eigen value assignment problem or the
Lyapunov design problem for the controller. We have the set of desired eigen values and we
also had a brief discussion on that based on the transient and steady state characteristics. You
can have those information about the desired set of eigen values and whenever we specify
those transients or the steady state performance criteria, they form the control objective
basically. So, now, here we will see another viewpoint of designing a state feedback controller,

where we now define the performance index explicitly in terms of the input output variable.

So or basically this is also a part of the optimal control design problem and today, we will see
a brief overview that how the controller can be designed using that viewpoint. So, the first a
standard problem is called the linear quadratic regular problem, the linear term, this linear term
basically comes from the fact that we are designing a system or we are designing a controller
for a linear system which is we have been discussing from the beginning that is our continuous

time linear time invariant system.

A quadratic word comes basically from the fact that whatever the performance index, we will
formulate or we want to optimize. It is quadratic in nature we will pay more focus to this to
this aspect as we go along the lecture. The regulator we have seen one regulation problem.
So, the idea remain the same that the state or the output should reach to 0 or the state impact

should reach to 0 which is a regulation problem.

So, the problem in this framework can be defined as that given a continuous time LTI system
which is given by this, the linear quadratic regulation problem or the regulator problem
consists of finding the control signal u of t that makes the following criterion as small as

possible.

So, we define the cost function which is the integral from 0 to infinity and inside the integrand,
we have the quadratic functions of the output signal y and the input signal u with some
weightage matrices Q and R. Now, these Q and R matrices are the positive definite matrices.
In the previous lectures, we have discussed about the quadratic forms and also about the

positive definite matrix. So, now, if I write only this integrand, the first integrand.



So, this integral is basically this y transpose of t and y of t say for example, forget about the Q
or take Q as an identity matrix dt. So, if you recall that this part by using the property of the

norm, I can define this as 0 to infinity and a norm of'y square dt ok.

Now, we let us write this integral in some another variable z is going; where, z could be either
state or the output variable y or the input variable u. Now, if it is an input variable u in some of
the tutorial problems we had seen that this define basically the energy; the energy in the
control signal or the control energy. Now, if it is only the output signal y, then we call it the
output energy. So, the basic idea here is we want to minimize the energy in the input output
signal and at the same time, we want to design a controller or we want to design a state

feedback controller such that this, these energies are minimized ok.

So, the following terms provides a measure first is the output energy; another is the control
energy. Now, this performance index it is because of its nature that is quadratic in nature, that
is why it is called LQR problem which we have define in terms of the output variable and the
input variable. Now, if I represent let us say this, I choose another function J in define 0 to
infinity and I use e of T which is a signal and some let us say some rate matrix e dt and if I
define e as R of t minus y of t; where, r is my reference signal and y is my output signal. Now,
if I design if I want to synthesize again matrix K such that this performance index is

minimized.

So, I am actually aiming to minimize this energy. So, that my error becomes equal to 0. Now
instead, now when we see or when we incorporate the property of the norm, we know all
these quadratic forms can be represented by these norms and from the property of the norm,

we know that this norm is positive or it would be 0 if and only if this z is equal to 0 ok.

So, it cannot have the negative values. So, the minimum value the this can go is only 0 and
when it become 0, ¢ become 0 that associate my reference my output signal would track the
reference signal ok. So, most of the control problems we had discussed so far can also be

formulated in this framework. So, we will see now the solution of this problem.
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In LQR one seeks a controller that minimizes both energies. However,
decreasing the energy of the output requires a large control signal, and a
small control signal leads to large outpits.

The role of the weighting matrices (J and R is to establish a trade-ff
between these two conflicting goals.

@ When [7 is much larger than (), the most effective way to decrease
Jign is to employ a small control input at the expense of a large
output,

@ When 12 is much smaller than (), the most effective way to decrease
Jrgn s to obtain a very small cutput, even if this is acheived at the
expense of employing a large control input.

So, in LQR taking this quadratic cost function. We seek a controller that minimizes both
energies. However, decreasing the energy of the output requires a larger control signal and a
smaller control signal leads to larger outputs. So, we will pay more attention to it and in fact,
we had seen in some of the tutorial problem also in the past couple of weeks that if we want to

achieve faster tracking, then in that case the control energy is much higher.

If we want to track the reference signal with the slow dynamics, where in that case the control
energy require in the or the control energy is a small. So, we can also play with those aspect
by changing the these the value of these weight matrices which are the positive definite
matrices. So then, R is chosen much larger than the Q matrix, what does it mean that we want

to penalize more control energy.



We want to penalize more energy and the most effective way to decrease J LQR, this cos
function is to employ a small control input at the expense of the large output meaning to say
the difference between the reference in the where we have the origin, the difference between
the origin and the output y would be having would be larger in that case ok. So, it is so there
is some trade off in selecting the these matrices Q and R. If we choose R higher, meaning to

say that we want to penalize the control energy more than the output energy.

If we choose Q higher, then we want to penalize the output energy, meaning to say in that
case our control energy would be higher also because we need faster control action to reach

towards to the reference trajectory.
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Definition (Feedback Invariant)

Given a continuous-time LTI system:
t=Ar+Bu, y=Cr, =zeR'u G:'_JR",.y €R™ (CLTI)
we say that a functional
H)l)

+
that involves the system's input and state is a feedback invariant
for the system (CLTI) whenever its value depends only on the
initial condition 2(0) and not on the specific input u(-).

So, before solving this problem, we will introduce a couple of definitions which would help us

to synthesize the feedback in matrix K. So, the first definition is about the feedback invariant,



that given a continuous time LTI system this one of where the state r is having dimension n,

here u is having a dimension k and y as dimension m.

We say that a functional H which is only a function of the signal x and the signal u that
involves the or we call this functional a feedback invariant for the system C LTI whenever its
value depends only on the initial condition x of 0 and not on the specific input ok. So, this
definition has some in fact, this is the that is why the name originates of this function as
feedback invariant because it is not affected by the control trajectory, but its value depends

entirely on the initial condition ok.
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For a symmetric matrix I, the functional

Hiz(:),u() £ - / (Ax(t) + Bu(t))" Pa(t) +=" (1)P (Ax(t) + Bu(t))dt
is a feedback invariant for CLT] as long as lim—. x(t) = 0.
We can write H as

Hiz(-),ul-) = _f\;""qr]f':{f] + 2T (1) PE(t)dt
0

_ [ * d(z" Px) ‘
- 0 rff a i

= 2(0)" Px(0) - Jim ,.J’f’; =" (0)Pa(0),
' +

as long as lim;—, - z(t) = 0. o

So, by introducing this functionl H, we have another result that for a symmetric matrix P, the
functional H defined as the negative of the integral from 0 to infinity of this signal transpose P

into X plus x transpose times P times this signal. We call this functional which is defined as this



is a feedback invariant for the continuous time LTI system as long as the state trajectory x t

satisfies that the value of the signal becomes equal to 0, as t tends to infinity ok.

So, this functional which we have characterized in terms of the state and the input trajectory is
called a feedback invariant under this condition. So, we can see a quick proof of this one. So,
if you pay attention to this part, this is nothing but the x dot ok. So, we have replaced this part
by x dot, similarly here we have replaced by x dot. Now, if you recall in one of the lectures,
we have discussed that I can express this overall part as the derivative of this quadratic form x

transpose P x.

Now, since we have the negative sign. So, I need to compute its value of this quadratic form
at t is equal to 0 minus the value of this as t tends to infinity ok. Now, if you see here, we have
x of 0 transpose P times x of 0 minus limit t tends to infinity x transpose P x. We have this
conditions given to us that the signal x t tend becomes 0 x t tends to infinity. So, this part
would go 0 and the remaining part is this one. So, we see according to the definition that this
functional becomes a feedback invariant because its value depends only on the initial condition

of the state trajectory.
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Suppose that we are able to express a criterion J to be minimized by an ’-nﬁﬂi_:-, h
appropriate choice of the input u(:) in the following form: ~ T NP‘TEL
J=H{x(.),ul.)) f Az(8), u(t))dl, (eriterion)
0

where H is a feedback invariant and the function Az, u) has the property that
for every r € R"

min A{z,u) =0

uERH
In this case, the control

u(t) = arg Ilﬁll Az, u),

will minimize the criterion J, and the optimal value of J is equal to the
feedback invariant

J = Hiz(.),ul.)).
Note that it is not possible to get a lower value for J since
@ the feedback invariant H is never affected by u and

@ a smaller value for J would require the integral in the right hand side of
(criterion) to be negative, which is not possible since A(x(1), uit)) can at
best be as low as zero. =

Now, suppose that we are able to express a criterion J to be minimized by an appropriate
choice of the input signal u in the following form. So, this criterion is important to pay
attention. So, we have expressed this J as equal to the feedback invariant function H plus
integral of some function gamma ok, which is a function of x and u; where, H is a feedback
invariant and this function has the property that for every x or for every n dimensional state

vector, this is satisfies that the minimum value of this function over u should be equal to 0 ok.

Now, it is pretty much straightforward that under this scenario, we can write the control signal
as the argument of this thing because we are basically computing those u for which this
function becomes equal to 0. So, the argument of this function would become or give me the
control signal u of t ok. So, we know that this u will minimize the criteria J and the optimal

value of J is equal to the feedback invariant now ok.



Because the I if [ want to minimize this function, minimizing this part would go only 0. So,
from here I compute u. Now, once this part becomes equal to 0 and this part is independent of

the time because its value depends only on the initial value of the state trajectory.

So, I would get this fixed value whenever this function is minimized or whenever this control
signal is applied in the feedback loop ok. So, note that it is not possible to get a lower value
for J. Since, the feedback invariant H is never affected by u. So, once we have computed or

once we know the initial condition or the initial value of the state, its value is fixed ok.

And as we have seen in the previous result or generally what we have seen that this function
could only get the positive value. A smaller value for J would require the integral on the right
hand side of the criterion to be negative, which is not possible since this function can be can at
best be as low as 0. So, this would be the minimum value of this criterion whenever we apply

this control signal.
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J=Hx(.),ul.) —/ Az(t), u(t))dt, (eriterion) ~  NPTEL
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It turns out that the LQR criterion can be expressed as in (criterion) for an

appropriate choice of feedback invariant. In fact, the feedback invariant

introduced earlier will work, provided that we choose the matrix

appropriately
For a symmetric matrix P, the functional
i - T P
Hiz(:),ul)) f {Az{t) 4 Bu(t))" Peit) 4 2° ()P [Az(t) + Bu(t)) dt
o » .
iy T
8 3 foedback invaeiant for CLTY a8 bong a8 limy o 2(t) = 0 . jlh a ¢ A ‘Jﬂ
B

So, again proceeding with this criterion, it turns out that the LQR criterion can be expressed
as this function for an appropriate choice of feedback invariant. In fact, the feedback invariant
which we have introduced earlier can also work provided that we choose the P matrix
appropriately. So, this function we have introduced in one of the results that this functional is
a feedback invariant under this condition. This condition is important for us; we will see why.
So, now, we will play with this function H to see the similarity between this criterion and the

LQR criterion we started with.
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J = H(x(.),ul.)) —/ Az(t), u(t))dt, (eriterion) = NPTEL
0

It turns out that the LQR criterion can be expressed as in (criterion) for an

appropriate choice of feedback invariant. In fact, the feedback invanant

introduced earlier will work, provided that we choose the matrix

appropriately

To check that this is so, we add and subtract this feedback invariant to the

LQR criterion and conclude that

Jigr =] (.J"l(d"lQ("‘r T Hu)dl
, \es b2
H+ f [‘ €"0C%z + u" Ru+44z + Bu)" Pz + 2" P(Az + Hu]) dt

) i

So, to check that this is so, we add and subtract this feedback invariant to the LQR criterion
and C. So, J LQR, I can write or what we had since 0 to infinity. So, this part is y transpose
and this is y ok. So, there should not be transpose. So, this transpose won’t be there because
this is y. Similarly, this transpose would not be there plus u transpose R u. So, we add this

functional H and subtract this functional H.

Now, this H, we already know is expressed by this one or in the compact form, I can write as
minus 0 to infinity X dot transpose P x plus x transpose P x dt. So, when I substitute with this
one, I this is the same what we have written. This is x dot and again, this is x dot ok. And

since, it was having a negative sign, so subtracting it would add it into the overall integral ok.
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J=H(x(.),ul.) —] Az(t), u(t))dt, (eriterion) NPTEL
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It turns out that the LQR cniterion can be expressed as in (criterion) for an

appropriate choice of feedback invariant. In fact, the feedback invariant

introduced earlier will work, provided that we choose the matrix

appropriately

To check that this is so, we add and subtract this feedback invariant to the

LQR criterion and conclude that

,fmzj (.r’("cg("’fr ' .r‘nu)d:
H+ f [‘ CTQCz +u" Ru+ (Az + Bu)" Px + 2" P(Az + fm) dt

-
=H4 [ [.r" [.llf’ + PA 4 ('in’J)J' : ' R+ ‘.erJH'lf‘.f') dt
Jo e )
By completing the squares as follows, we group the quadratic term in u with
the cross-term in,u times ¢

(s +2"K") R(u+ K) = u" Ru +2" PBR ™' B"Pr + "B Px,
"I il K=R'BP.
I N e ik

So, now we will arrange a couple of terms to visualize that what is how to simplify the things
for computing the feedback gain k. So, we have coupled all the or we have combined all the
terms for which the x transpose is common in the pre multiplication factor and x is common in

the post multiplication factor. So, here we would have x transpose A transpose P times x.

So, if you see that onto the left hand side and the right hand side, we should have this one x
transpose x. So, this part would go here. Similarly, by taking the transpose of it, we would
have x transpose A transpose and P times x. So, this is the first term. So, this first term will
become this one and the next term is this one which is x transpose P Ax ok. This is the third

term.

Now, the rest of the term we have written here. So, this one become u transpose R u and the

two terms could add up because from here, we would have u transpose B transpose P times x



and x transpose P times B into u. Now, these two terms because they are scalars, they would
add up. So, we have written that twice of u transpose B transpose P times x ok. Now, by
completing the squares as follow, we group the quadratic term in u with the cross term in u

times X.

So, now, we introduce this quadratic form where you can express this is u tilde; where, u tilde
u plus K times x and this becomes u tilde transpose ok. And here, K we have replaced by R
inverse B transpose into P. So, if I open this quadratic form, we would have u transpose R u
plus x transpose and by putting K into this, we get this long expression plus twice into this.
Now, if we see the similarity between this expression and this expression, the rest of the part
this part I can express as which is also available here. If we see these two parts, I can express

as this whole part minus of this full part.
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‘ (rrJ Py I\-f} R(u+ Kzx)dt.
If we are able to select the matrix P so that

ATP+PA+CTQC - PBR'BTP =1,

T = H of;ii';ﬂuir




So, this is what we have written here, the J LQR is equal to the feedback invariant function H
and inside the integral, this is the term which we already had previously. Now, this term we
get if I replace this and this by this it minus this and since it also contains x transpose and x as
pre multiplication and post multiplication vectors. So, we have combined that term inside this

term minus of this one and the rest of the part as this one right.

So, now, if we pay attention to this function that if we choose this part is equal to 0 plus if we
choose this part equal to 0, the rest of the part remains J is equal to H plus integral of 0 to
infinity this or let us say u tilde R u dt ok. Now, if you pay attention to this form and to this
form or the criterion, we had introduced inside this integral. So, this is nothing but equal to

your gamma function ok.
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If we are able to select the matrix I so that

ATP+PA+CTQC - PBRT'BTP =1,

We obtain precisely an expression such as (criterion) with

Az, u) = [u'l' . J""I\"rljl’f[rr + Kr)
U Hw



So, this is nothing but your gamma function as u tilde R u ok.
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. (rr? ot f\'f.} Ru+ Kr)dt.
I we are able to select the matrix I so that

ATP+PA+CTQC - PBRT'BTP =1,
’ -

We obtain precisely an expression such as (criterion) with
AMzow) = (" + 2" KT)R(u + Kz)
which has a minimum equal to zero for
w=-Kr K=R'B"P,
leading to the closed-loop system

i=Az+BKz= [.i- BR 'n’f’);.

e

Now, which has a minimum equal to 0. So, this would be equal to 0, if we have u is equal to
minus K times x and this is nothing but our state feedback, where K is expressed as R inverse
B transpose P. Here, the inverse of R is possible because R is positive definite already in the

definition of the cost function and P, we need to find out ok.

So, now the problem of designing the feedback gain K, the problem now boils down to
compute the matrix P and the matrix P would be computed from this equation. So, when I
apply this u is equal to minus K times x to the LTI system, we know already that this would

become our closer loop system ok, with the closer loop state matrix A minus BR inverse B



transpose P; where, instead of finding the matrix K, k we need to find the matrix P and here

you would realize that this equation is a non-linear equation.
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Theorem (Optimal State Feedback)

Assume that there exists a symmetric matrix P to the following algebraic
Riccati equation (ARE)

ATP+PA+CTQC-PBR'BTP =1 (ARE)
4 .
for which A~ BR~ BT P is a stability matrix. Then the feedback
control law— f, _
+ u=-Kz, K=R'B'P,

stabilizes the closed-loop system while minimizing the LQR criterion

an® [ /0040 + 7 OR()
J0

Note: Asymptotic stability of the closed loop system is needed because
we assumed that limy, #(¢) Pr(t) = 0.

e

1 . .
Kumar and Jain, Seme Insights on Synthesizing Optimal Linear Quadeatic Contrallers using Krotov Sufficient

Conditiors, IEEE Cantrol Systems Letess, 2020

So, this we have one of the result, the optimal state feedback. They assume that there exists a
symmetric matrix P to the following Algebraic Riccati Equation. So, this equation what we
have find out through this whole procedure. So, this equation is basically defined as the
Algebraic Riccati Equation for which the closer loop state matrix is a stability matrix. So, this
point is a very very important point, we will come onto this point a bit later. Then, the
feedback control law u is equal to minus K times x; where, K is defined by this, stabilizes the

closed loop system while minimizing the LQR criteria ok.

So, why I say that we need to find a symmetric matrix P for which this closed loop state

matrix is a stability matrix because there are many matrices P which satisfies this equation, but



for some P this closed loop state matrix might not be a stable matrix or its orbits. In since, we
want to minimize the cost function over 0 to infinity, we definitely want that the state
trajectory should reach to 0 as t tends infinity. So, there might be some P; there might be some
P for which this closed loop state matrix is not stable matrix, but still it satisfy this matrix this

equation ok.

So, generally the problem of the optimal control design and the stability problem are two
different problems. For optimality, we need to find one P which satisfies this equation; but for
some P, if I compute this controller u and apply to the plan, the closed loop might not be
stable ok. But for some P, I could still have the this matrix has a stable matrix which ensures
that my closed loop would be a stable ok. So, we can also say that the symmetric P which
satisfy this one for which this is a stability matrix, we can also called those P as a stabilizing

solution. So, basically, we want to find all the stabilizing solutions of this equation.

So, that this closed loop state matrix becomes a stability matrix. Note at asymptotic stability of
the closed loop system is needed because we assumed that this part should become equal to 0
which is equivalent to sign that the state trajectory should reach to 0 as t tends to infinity.
Now, here we have I have put a one paper in the footnote, where we have discussed another
viewpoint of discussing the linear quadratic problem using a Krotov sufficient conditions. So,

you may look at this paper to get to dwell into more into the subject.
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Attention

The ARE itself already provides the clues about whether or not the
closed-loop system is stable. Indeed if we write the Lyapunov
equation for the closed loop, we get Aa

i,
(A- BR'B"P)"'P+ P(A- BRZ'B"P)
R i e —
M = ATP4+ PA-2PBR'BTP
=-Q<0
for Q=C"QC + PBR'BTP > 0. Incase P> 0 and >0, we

could immediately conclude that the closed loop system was stable
by Lyapunov stability theorem,

So, the ARE itself already provides the clues about whether or not the closed loop system is
stable indeed if we write the Lyapunov equation for the closed loop. So, this is our let us call it
A bar or AC, a matrix of the closed loop. So, this matrix becomes AC 1 transpose AC 1
transpose P plus P times or AC 1 ok. Now, if I simplify this equation, I would get A transpose
P plus P times A minus twice of this whole part ok, which would be expresses minus Q bar

which would always be a negative definite this one; for Q, positive definite ok.

In case P is a positive definite matrix and Q bar is a positive definite, we could immediately
conclude that the closed loop system was stable by Lyapunov stability theorem. So, here we
have recalled one of the result, we had discussed during the stability week, where we

established the Lyapunov stability theorem for continuous time LTI systems.
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[K,P,E] = 1gr(A,B,Q0,RR,NN)
computes the optimal state feedback LQR controller for the process
T =Ar+Bu

with the criterion
J= / 2(1)'002(8) + u(t)'RRult) + 22(t) WNu(t)dt.
S0

For the criterion in (Cost function), one should select
W=CQC, RR=R, NN=0.

This command returns the optimal state feedback matrix K, the solution
P to the corre_;uonding algebraic Riccati equation, and the poles E of the
closed-loop system.

In MATLAB, u there is a direct function available which we is defined by its own name LQR.
So, here on the left hand side, we give three outputs of this function whose arguments are the
A, B matrices; this QQ is nothing but C transpose QC which is the weight matrix in the cost
function; This RR is this the weight matrix of the of the control energy and NN, we have not
discussed about this NN.

So, for the moment you can put NN is equal to 0. So, here NN. So, let us say so we have
discussed this J 0 to infinity as the norm of y weighted by Q plus norm of u weighted by R. So,
there are some couple of terms, let us call it phi which are the multiplication of y and u or x

and u.

So, the weight matrix of those cross terms is basically NN. Now, here since we have not

discussed this cross terms this part, we have you can put NN is equal to 0 ok. So, once you



input all these matrices, you will get three outputs k. So, K would be the optimal state
feedback matrix K. The solution P is the solution of the Algebraic Riccati Equation and E
gives you the poles of the closed loop system. So, by using this method, you can also design

the multivariable the state feedback in matrix for the multi variable system as well.



