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Bounded-Input, Bounded Output Stability g 5#}
Internal or Lyapunov stability is concerned only with the effect of the initial nht"“ :
conditions on the response of the system.

We now consider a distinct notion of stability that ignores initial conditions
and is concerned only with the effect of the input on the forced response.

We shall see that for LTI systems these two notions of stability are closely
related.

Consider the continuous-time LTV system
i= Az + B(tlu, y=C{t)r+D(tju, reR" ue B yeR™

The forced response of this system is given by
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So, now we will start with another definition of the stability that is Bounded Input, Bounded
Output Stability. So, so far we have seen the definitions and some of the key results in the
sense of Lyapunov or the internal stability, which is mainly concerned with the effect of
initial conditions. So, we had not seen with respect to the control input u. So, this particular

concept of stability deals with that when the input is also included in the definition.



So, we now consider a distinct notion of stability that ignores the initial conditions and is
concerned only with the effect of the input on the forced response. So the, so far what we had
seen about the internal and the Lyapunov stability, we have considered the homogeneous
systems. So, here we will consider that the initial conditions as zero and the output or the

state is only affected by the input given to the system.

So we shall see that for LTI systems that these two notions of stability are closely related, that
is the bounded input bounded output stability and also the Lyapunov stability. So, we will
start with the continuous time linear time varying systems, where all these matrices A B C D
are the time varying matrices. So, first we will start with the continuous time. So, we had
discussed on the first week that, the forced response of the system is given by this equation.

So, here we have specified y with a subscript f which denotes the forced response.

And we also know that the total response of the system y is one component comes from the
homogeneous plus component comes from the forced response. So, this homogeneous
component is because of the initial condition x naught and this forced component is because
of the external input u. So, now, we will concerned or we will see the definition of the
stability when we have the initial condition equal to zero; meaning to say we would not see

this response, we will only concerned with the forced response.



(Refer Slide Time: 00:24)

Bounded-Input, Bounded Output Stability ﬂhr ;\;ﬂ}

Internal or Lyapunov stability is concerned only with the effect of the initial
conditions on the response of the system

We now consider a distinct notion of stability that ignores initial conditions
and is concerned only with the effect of the input on the forced response.

We shall see that for LTI systems these two notions of stability are closely
related.

Consider the continuous-time LTV system
i=All)z+B(tu, y=C()r+D({iu, reR"uck yecR"™

The forced response of this system is given by
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The system (CLTV] is said to be {uniformly) BIBO stable if there exists a
finite constant " such that, for every input u, its forced response yy satisfies

sup |ly;(f)f < g sup [ult)]

(0,5 1E[0,50)

1
The factor g cam be viewsd 2 2 system “gain’

So, the definition of the BIBO stability is given here, that the system continuous time linear
time varying system is set to be uniformly bounded input bounded output stable; if there
exists a finite constant g. So, here you can consider the factor g as a system gain; such that for
every input u it is forced response y of f satisfies this inequality. That is to say that the
supremum of the norm of the signal y of f for over t for or let us say for all t greater than or
equal to 0, is less than equal to the gain g multiplied by the supremum of the norm of the

signal u of t over all t greater than equal to 0.
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Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent. A
Q The system (CLTV) is uniformly BIBO stable. et j 2 e
@ Every entry of D(t) is um'formfyf bounded * and %

t
sup] |gij(t.7)|dr < 00
t20Jo

for every entry g;;(1,7) ofC(J}o_(r.ﬂ_lEH)‘

1

A signal (£} is uniformly bounded if there exivts  finite constant © such that ||z(f)]| < e, ¥E > 0

So, this is the key result for the bounded input bounded output stability for the LTV systems.
So, these two following statements are equivalent, that the system is uniformly BIBO stable.
Second that every entry of the matrix D of t is uniformly bounded and the supremum of the
integral over t greater than equal to 0 of this integrand is less than infinity: for every entry g i j

t comma tau of this matrix, ok.

So, again we will see the proof in two parts. So, this is the, when we say that these two
statements are equivalent; we actually want to show that 1 implies 2 and 1 is implied by 2.
So, once we have proved both ways implication meaning to say, that 1 is actually equivalent

to 2 and this is this key result speaks about.
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Conditions in (1) implies that the gain g is finite, n“hr‘r.:;

urlt)l| < / |C ()l t, v ) BUr |||l )| 4 || DU | [ult))], ¥ = 0
+ 0

sl < JeriOl

So first we will see 2 implies 1 meaning to say; that if every entry of D of t is uniformly
bounded and this condition is satisfied, then it implies that the system is uniformly bounded
input bounded output stable. Now see that the conditions in 1 implies that the gain g is finite.
If we go back to the definition of the uniformly BIBO stable, so this we say that the system is
uniformly BIBO stable; whenever there exists some finite gain constant or finite constant g
such that this equation is satisfied, ok. So, either saying that the system is BIBO stable or
there exist a g is equivalent. So, we actually going to prove that there exists some gain g

which is finite ok.

So, let us start with the response, the forced response of the system which is given by this
equation. If we take it is norm both side, so we can say that the norm of the signal y f is less
than equal to the individual norm of these two signals. And this comes from the property that

the multiplication of two matrices or the norm of the multiplication of two matrices is less



than equal to the multiplication of their individual norms, ok. So this inequality comes from
there and similarly we apply this property on to the second part ok, for all t greater than equal
to 0.
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this i & conequence of the trianghs ineguality

Now, let us define two signal or two scalars mu and delta; this mu is given by when we take
the supremum over t belonging to 0 to infinity for the norm of the signal u of t and delta as
the supremum of the norm of that D of t for all t greater than equal to 0. So, by defining these
two scalars mu and delta, we can rewrite this equation like this. Let us say, so the norm of the

signal y f'is less than equal to the integral, this part would come as it is.

Now if I take the supremum of this one is mu. So, this signal, the norm of the signal y of f
would also be less the mu and delta. So, this part comes here delta and I have taken the mu

common out of this complete equation, right. So, now, we define the gain g by this part,



which is the supremum of over for all t greater than or equal to 0 and this part. So, what we
need to prove that, if g is finite or not; to basically to prove this implication 2 implies 1, we

only need to show that this g which we have defined by this is finite.

So, note that, the norm of this complete entity is less than equal to the summation of the
absolute value of g 1j t comma tau; and this is basically comes from the triangular inequality.
This triangular inequality says that, the norm of the summation of two matrices is basically

less than or equal to the summation of their individual norms, right. So, this is effect.
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Now using this effect, we can rewrite this inequality by this by taking the integral both sides;
because it would not change, because both the quantities are positive. So, I have added the
integral both sides. So, from 0 to t and O to t, again now taking the supremum both sides this

part you would see. Once | write the supremum over here, this part is basically what we have



defined initially by the summation of the delta, ok. So, from here to here I have done two

things; I have added the delta both side first of all and then took the supremum.

So, if I see the first part, basically the left hand side it is nothing, but what we had defined
initially the gain vector g. Now this g is less than this part, which we know is already a finite.
So, this proves the this implication 2 implies 1; because we only need to prove that there exist
a gain g which is finite. And by using the properties of the norms, we have actually concluded

with the effect that this g is basically finite, ok.
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Time-domain condition for BIBO stability

Theorem (Time domain BIBO stability condition)

The following two statements are equivalent.
Q The system (CLTV) is uniformly BIBO stable. 231
@ Every entry of D(t) is uniformly bounded * and | 5 %=
+

t
hup] |gij (2, 7)ldT < o0
0
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for every entry g;;(t,7) of C(t)¢(t, 7)B(7).
wjlt) = [Jl"-:flhlf‘.-]“\.-]ul:-]d.- + D{t)uli).

sup Jyp(t)l| 29 sup [lult)
L[] tE[D, 2

1

A ignal () is uniformly bounded if there exivts a finite constant © such that ||z(f)]| < e, %8 > 0

So, this proves the first implication that is 2 implies 1. Now to prove 1 implies 2, let us recall
that the forced response is given by this one and this was the definition of the BIBO stability,
right. So, what we need to prove that the system is, if the system is uniformly BIBO stable;



then it implies that every entry of D of t is uniformly bounded and this condition is also

satisfies for every entry g ij t comma tau, ok.
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Suppose first that 2 is false because the entry d,j(w) of D(s) is unbounded | —
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vielated no matter what we choose for the finite gain g
To do this, pick an arbitrary time T" and consider the following step input

s |0 0<reT

up(r) & s Y¥r>0,
& T2 T
where e @ RY is the Jth vector in the canonical basis of RE. For this input, the
second term of the forced response at time T is exactly
1]
f ir |
wplT) = D(T)e; ['LJ

We thus have found an input for which
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where the last inequality results from the fact that the norm of the vector D(T')e;
must be larger than the absolute value of its ith entry, which is precisely d;;(T')

Now, we will do the proof of this implication by contradiction; meaning to say, what we want
to prove that 1 implies 2. We can also prove that, if the statement 2 is incorrect or if the
statement 2 is false, then it implies that the statement 1 is also false, ok. So, both these
implication either I say 1 implies 2 or negation of 2 implies negation of 1. So, both of them
are equivalent. So, we are going to prove this by contradiction. So, let us see. So, here we
have two parts to prove; first that every entry of D of t is uniformly bounded, secondly that

this condition is satisfied ok.

So, first we will see the proof of this that, the every entry of D of t or some entry of D of t is

not uniformly bounded; then it implies the system is not uniformly BIBO stable. The second



part of the proof says that, if this condition is not satisfies; then the system is not uniformly
BIBO stable, ok. So, let us see suppose first that 2 is false, because the entry d i j of this
matrix D is unbounded, ok. So we show next that in this case taking the supremum of the
signal y f for all time t is less than equal to g multiplied by the supremum over all time t of

this norm of the signal u of t is also violated, no matter what we choose for the finite gain g.

Meaning to say that, there does not exist any gain g. So, to do this, we pick an arbitrary time
T and consider the following step input; where this signal u in subscript T of tau defines that
whenever tau is lying between 0 and T the signal is 0; and when the tau is greater than or
equal to T it is e j and e j is the j th vector in the canonical basis of the k dimensional vector,
ok. So for this input, the second term of the forced response at time T is exactly given by y f T
is equal to D of T in to e of j, all right. Because we know before time T, the input is 0. Now at

time T only this part would remain, this part would go to 0, at time T only.

So, this is what it is said; that the forced response at time T is exactly equal given by this
equation. So, what we have found an input which is bounded that, the supremum of this input
what we are defined is basically is equal to 1. And if I take the supremum for all time T of the
signal y f't is always greater than equal to y f T capital T. Because we know that y f capital T
would be unbounded, right which is equal to D of T and we know some of the entry d i j is
unbounded. Meaning to say that, this would be greater than or equal to the absolute value of
the d 1 j. So, where the last inequality basically results from the fact, that the norm of the

vector this must be larger than the absolute value of it is i th entry, which is precisely d i j.

This you can visualize by this let us say, if we have a vector which is given by 1 and 2. Now
if I compute the norm of this vector, it would be given by 1 square plus 2 square; let us take
the two norm ok, the two norm of this vector is given by under root 5. Now the norm of this
vector is basically greater than the absolute value of all these entries, so root 5 is greater than
1 and root 5 is greater than 2. Basically this part comes from this that effect, that the norm of

the vector would always be or it must be greater than the absolute value of it is 1 th entry, ok.
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We show next that in this case SUPgein ) 1071 & g8upyei o) [lult])]| can be
violated no matter what we choose for the finite gain _F
To do this, pick an arbitrary time 1" and consider the following step input:

0 0<r<T o
T2 U,

up(r) &
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where ¢; € R* s the jth vector in the canonical basis of R, For this input, the
second term of the forced response at time T is exactly

uy (1) = D(T)e;
Wie thus have found an input for which
sup Jup(t)] =1
EE [0}

and e - .
sup w6} 2 lue (7)) = 1 D(T)e; | 2 [dis (T,
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where the last inequality results from the fact that the norm of the vector D{T')e;
must be larger than the absolute value of its ith entry, which is precisely d,;(T).Since
dij(#) is unbounded, we conclude that we can make supy i« [luy ()] arbitearily
large by using inputs uy(#) for which supy (g ) ur(t) = 1, which is not compatible
with the existence of a finite gain §. This means that [(s) must be uniformly
bounded for a system to be BIBO stable

So, since d 1 j is unbounded, we conclude that we can make this part; arbitrarily large by using
the input for which we know that this input is bounded. Meaning to say that, there does not
exist a finite gain g; this means that D matrix must be uniformly bounded for a system to be
BIBO stable. Because if any entry of the matrix, time varying matrix d is unbounded; then

there does not exist any finite gain g, ok.
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is unbounded for some ¢ and §
We show next that in this case supycp o) 10 (8] € g8upyepp o [Jult]]| cam be
violated no matter what we choose for the finite gain g.
To do this, pick an arbitrary time T' and consider the following “switching” input:

u(r) & +ej H,,I;l.rj =0 30,
-ej gijlt,7) <0

For this input, the forced response at time T' is
T
wlT) _[ C(T)@(T, 7)Br)ulr)dr + D(T)(T),
0

and its ith entry is equal to _||;,i i T, 7)|dr £ d(T). We thus have found an input
for which +

SUP; e 0, 0c) Juri{t)] =1 and BUPge [0,00) ‘l#f[”” > |U’_l[” | 2 |_L: !}u[f-T”‘h = ’frJ[f) -

Since (7) is unbounded, also now we conclude that we can make sup, -1 . [|ur(t)
arbitrarily large by using inputs uy(s) for which sup, - . ur(t) = 1, which is not
compatible with the existence of a finite gain 4. This means that condition (2) must
hold for a system to be BIBO stable.

Now, the second part of the proof says, suppose the second condition in the second statement
is false, right. And why it is false; because this integral is unbounded for some i and j, ok.
Again similar to the previous proof, we want to show that there does not exist any g for which
this equation or this inequality is satisfied. So, again we pick an arbitrary time T or we design
a signal u, the control signal u which is bounded this you can see that; we defined the signal
in the sense that whenever this i th, i j th entry of the of the g, t comma tau is greater than

equal to 0, the input is plus e j.

And if it is less than 0, the input is minus e j and e j is the canonical basis of the n
dimensional vector k dimensional vector sorry, ok. So, again if we compute the response at

time T, it is given by this one; and it is 1 th entry would be given by this part. So, because we



know that the i th entry of this part is given by this and the i th entry of D of T is basically d i
j ok, only at time T.

So, now what we have found, that although the input is bounded because of the characteristic
we have defined earlier. And if I take the supremum of the norm of the signal y f is always
greater than equal to the norm of the signal at time T and at time T; which is basically given
by this part is greater than or equal to the absolute value of it is i th entry which is given by
this part, right again using the similar triangular inequalities. So this means that, this

condition must be true to ensure that there exist a gain g for with the system is BIBO stable.

So, this completes the overall proof that, these two statements are equivalent and the system
is BIBO stable. And the second states that the every entry of D of t is uniformly bounded in

this condition or the 1 j th element of this matrix is satisfied.
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So, let us see for the time invariant case of, for the time invariant system we have A B C D
matrices which do not depend on time. And we also know the state transition matrix for the
LTI which is given by this exponential matrix; where if you are using t comma tau, then it

turns into e to the power A in to t minus tau, the C and B matrices would remain the same.

So, therefore, rewriting from the previous definition is we can rewrite it as, that the
supremum of the integral of this integrand is should be bounded; basically the it is the
impulse response, that the impulse response should be bounded with the understanding that
now this part denotes the i j th entry of this matrix. So, let us do a change of variable, we
replaced this t minus tau part by rho; we conclude that if I put t minus tau is equal to rho, then

we can replace minus, if [ take the derivative of this equation it would give me d rho.

So, here d tau would be replace by d rho. So, if I make changes over here, just ignore the
supremum for a time being. So, we would have the initial limit at tau is equal to 0, we would
have the initial limit t; and when the final value of tau is t tho would be equal to 0 ok. And we
have the which is the function of rho and d rho with a negative sign,. Now we can remove this
negative sign by changing the order of this integration which is equivalent to saying that, 0 to

t the function inside the absolute value and d and this is overwritten over here, ok.

Now, extent if we are taking the supremum for all time t, we can extend this time t upto

infinity which eventually give us this condition. So, this must be bounded.
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For the time-invariant system
&= Ar+ Bu, y=0Cr+ Du,

we have E o
Colt,r)B = ceMT)p,

Therefore, rewriting from the previous definition as

t
sup { |qig{t = 7)|dr < o2,
t20J0

with the understanding that now §;;{t — r) denotes the ijth entry of CeA('=7) 3,
Making the change of variable p £ { — 7, we conclude that

i t x
sup [ |gijlt = r)ldr = -*'1111f [aij(p)ldp = f |i(p)ldp.
Li 2040 [
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Theorem |:TII'I'IP." domain BIBO LTI condition)

The following two statements are equivalent.
Q The system (CLTI) is uniformly BIBO stable.
@ For every entry §j(p) of Ce*B, we hale

[I%MWﬁm

So, this gives us the next result, that the system is uniformly BIBO stable; and for every entry
g bar i j of this matrix, we have the absolute value of the impulse response integrated over 0
to infinity is also finite. This also says that, the impulse response is absolutely integrable,

right.
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The Laplace transform provides a very convenient tool for studying BIBO mhﬂ' NPTEL

stability.

To determine whether a time-invariant system (CLTI) is BIBO stable, we need
to compute the entries g, (1) of Ce™ B. To do this, we compute its Laplace
transform, £|Ce' B] = C(s] - A)7'B.

The ijth entry of this matrix will be a strictly proper rational function of the
general form

apst + a8 4 a5 4o
(5= 0105 = dg) ™2 oor (5= Ag)e”

where the ), are the (distinct) pole of §;;(s) and the m; are the corresponding
multiplicities. Perform the partial fraction as

giils) =

iy apg ayy,
1 b m

jij(s) = + - =i .
ij(s) (s=M) (s=M)? PR

Lk a2 - Uiy

(=) - AP {5 = i)
The inverse Laplace transform is then given by

gilt) =L ! [gii(5)]
ap e +a”r)'|'\'-' b b ™M 4
LI My ol Mty +“k|”._l,“-l + Ay t

We can also see the frequency domain conditions for BIBO stability, because we know for
LTI system we can use this Laplace transform tool; likewise we had seen in the first week.
So, to determine whether a time invariant system CLTI is BIBO stable, we need to compute
the entries g i j of this. To do this we compute it is Laplace transform and the Laplace

transform of this entry is given by C into the inverse of s I minus A into B.

Now, to compute the i j th entry of this function, it could be written as the ratio of two
polynomials where this is the numerator polynomial and the denominator polynomial. And all
these lambdas defines the eigen values or the roots of these equations with the multiplicity
m,. So, if we have m 1 is equal to 2; it means that, there are two roots located at lambda 1. So,

we can do the partial friction of this equation, where we obtained these coefficientsa 1 1, a 1



2 which we can compute given the transfer function. And in the denominator we would have

all the powers of this first order polynomial.

So, we have s minus lambda 1 square upto to the power m 1; which denotes this multiplicity
plus similarly for the other elements and again for the k th one. So, now, if I take the Laplace
inverse to compute the time domain signal, I would have a 1 1 e to the power lambda 1 t plus;
because we have the square by using the property of the Laplace transform I would have a 1 2
multiplied by t. So, this element is added new plus for the m 1th multiplicity we would have a
1 m 1, t raise to the power m 1 minus 1 and e to the power lambda 1 t. Now similarly goes for

the lambda k th eigen value with multiplicity m k, ok.
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Frequency Domain Conditions for BIBO Stability

We therefore conclude the following.

@ If for all Gi;(s), all the poles A, have strictly negative real parts, then
0ij(t) converges to zero exponentially fast and the system (CLTI) is

BIBO stable,

@ If at least one of the §;;(s) has a pole A; with a zero o positive real part,
then |g;;(f)| does not converge to zero and the system (CLTI) is not
BIBO stable,

Mote that adding a constant [J term will not change its poles.

Theorem (Frequency domain BIBO condition)

The following two statements are equivalent:
Q The system (CLTI) is uniformly BIBO stable.

@ FEvery pole of every entry of the transfer function of the system (CLTI)
has a strictly negative real part.

So, we therefore conclude the following; now if for all g ij of s all the poles lambda 1 have

strictly negative real parts, then g i j of t converges to zero exponentially fast and the systems



CLTI is BIBO stable. Because first of all we have already seen that, the definition of
exponential stability and asymptotic stability for the LTI system basically remains the same.
And since if we look at this part that, the impulse response is basically expressed in terms of
the exponentials. Now all these lambdas define the eigenvalue. Now if these lambdas on the

left hand side, all these exponentials would die out to zero, exponentially.

So if at least one of the g i j of s has a pole lambda 1 with 0 or positive real part, then the
absolute value of the g i j does not converge to zero and the system is not BIBO stable. So, if
we add the D term also which is a constant term, basically it would not change the location of
the poles. So, this is the key result in the frequency domain that, the system is uniformly
BIBO stable; if and only if every pole of every entry of the transfer function of the system has
a strictly negative real part. If the eigenvalue or if the pole of every entry of the or any entry of

the transfer function is on the zero or positive then it cannot be said BIBO stable system.
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We now know that the LTI system
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= Ar+ Bu, y=Cr+ Du

is uniformly BIBO stable if and only if every entry §i;() of C'e' B satisfies

f i (t)|dt < 0 (8)

However, if the system (CLTI) is expanentially stable, then every entry of ¢ Al
converges to zero exponentially fast and therefore (8) must hold

Theorem

When the system (CLTI) is exponentially stable, then it must also be BIBO
stable, +

In general, the converse of the above theorem is not true, because there are
systems that are BIBO stable but not exponentially stable




So, now there is a some relationship between BIBO stability and the Lyapunov stability. So,
let us explore this for the LTI system. So, we know that the LTI system given by these two set
of equations is uniformly BIBO stable; if and only if every entry g bar i j of this satisfies this
condition; meaning to say that, it is absolutely integrable. However, if the system is
exponentially stable then every entry of e to the power A t converges to zero exponentially

fast and therefore, 8 must hold, right.

So, when the system CLTI is exponentially stable, then it must also be BIBO stable. Now this
exponentially stability is basically in the sense of Lyapunov. Meaning to say that, if the
system is stable or exponentially stable in the sense of Lyapunov; then it must also be a BIBO
stable given a bounded input the system would yield a bounded output. But the converge of
the statement is not true in general that is to say that; if the system is BIBO stable, then it we

cannot guarantee that the system is exponentially stable.
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for which

1
We shall ses in later lectures that this discrepancy batween Lyapuney and BIBO stabilty s abways assoclated
with lack of controllability o shservabilily, two concepts that will ba introduced latar,

7
“The system is nat contrallable

Let us consider one example to illustrate the situation. Say for example, we have the system
given by this A, B, C, D matrices where A matrix is 1, 0, 0, minus 2. B vector is given by 0, 1
and C is 1, 1. So, basically it is a single input single output system of a second order, alright.
So, if we compute the straight transition matrix of this system; we obtain this and we know
that one of the element is e to the power t and it is not exponentially stable or unbounded and
therefore Lyaunov unstable, but if we compute this part we obtain e to the power minus 2 t;

meaning to say that this system is BIBO stable.

So, this is what we want to say that if the system is BIBO stable; it does not mean, or it does
not implies in general that the system would also be Lyapunov stable. And we shall, so these
are two footnotes written over here that we shall see in later lectures that this discrepancy
between Lyapunov and BIBO stability is always associated with the lack of controllability or

observability. So, these two concepts we will see in the in the later lectures. By the way that



this system if by the tests or the controllability tests we were going to reduce in the next week.

You would notice that this system is not controllable, right.
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Consider now the following discrete-time LTV system
aft + 1) = A(t)x(t) + B(t)u(t), ylt) = C(1)e(t) + D(t)ult)

The forced response of this system is given by
+

t=1
w(t) =Y Colt, T+ 1)Blrulr)dr + Ditu(t), w210,

=l

Definition (

The system (DLTV) is said to be (uniformly) BIBO stable whenever there
exists a finite constant o' such that, for every input u(s), its forced response
yy(») satisfies

sup [|yz (1)) < gsup [fu(t)].
teN teN

i
The factor g can be viewsd as the “gain™ of the system.

For the discrete time case; so given A, B, C, D as time varying matrix where t belongs to the
set of integers. We have seen earlier that the forced response of the system is given by this
equation. So, the definition of the BIBO stability in affect for the discreet time system also
remains the same. That if the, we say that the system is BIBO stable whenever there exists

some finite constant g; which satisfies this inequality.
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Discrete-time case o f%

Theorem (Time domain BIBO condition) -

The following two statements are equivalent.
Q The system (DLTV) is uniformly BIBO stable
@ Every entry of D(e) is uniformly bounded and

s!lpzhu[f.f” < 00
i20
=0

for every entry gi;(1,7) of C(t)a(t, ) B(7).

Theorem (BIBO LTI conditions)

The following three st are equival

Q The system (DLTI) is uniformly BIBO stable.

Q For every entry §ij(p) of CA” B, we have
x
Y[ (p)] < 00
=l

@ Every pole of every entry of the transfer function of the system (DLTI)
has magnitude strictly smaller #han 1.

The time domain BIBO condition for the discrete time DLTV system, it is BIBO stable if and
only if every entry of D is uniformly bounded and the impulse response is absolutely

summable. We can also see the conditions for the LTI system.

So, we say that the system linear time invariant system is uniformly BIBO stable; if and only
if for every entry g bar i of j of C A rho B; we have this condition, ok. And the third statement
is basically in the in the frequency domain which say that every pole of every entry of the
transfer function the system DLTI has a magnitude strictly smaller than one, basically it

should be inside the unit circle.
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Consider the function defined by L 1
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flt-n) n4(t-njn', forn rEtin
n)= P .
n=(t=njnt, forn<t<nt
for n=12.1,.... The area under each triangle is 1/n?. Thus the absolute integration
of the funetion equals 3™ ,(1/n%) < ac. This functien is absolutely integrable but is

not bounded and does not approach zera as+r —+ 0.

Correct Equation
1 2

XK

So, there are some interesting facts we which we can see now. So, consider a function which
is defined by this relationship, ok. This is a continuous time function where n is a integer
starting from 2, 3 and up to so onwards. So, if we plot this function; this is the plot of this
function we have obtained. Now you would notice that the area under every triangle is given

by 1 by n square.

So, we can see also that the for the n is equal for some nth value it is given by; a half the
height n and also the base which is 2 by n square which basically comes to 1 by n square. So,
so the area of all this triangle is 1 by n square. So, if we compute the integration, we see there
is the absolute integration of the function is equal to or equals that; this summation would is
the finite summation because as n increases from 2 to infinity, this summation would be a

finite summation.



This would approach to zero. So, this function we know that is absolutely integrable, but is

not bounded and does not approach to zero as t tends to infinity.
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In the discrete-time case, if g(f) is absolutely summable, then it must be

bounded and approach zero as | = no. However, the converse is not true.
Consider g(f) = 1/t, for £ = 1,2,... and g(0) = 0. We compute
= o
1 ikl
9= t)] = l+-H-+-H--
Z b ZI t 2 f I |

Ll
BRI PTT
, 7
We natice that e
1 1
5 |yt

This impulse response sequence is bounded and approaches () as t — oo but is
not absolutely summable.

So, if we would like to see in the discrete time domain. So, in the discrete time domain; if g
of t or if the signal is absolutely summable, then it must be bounded and approach 0 is t tends
to infinity; which is a counter statement to this one, that this here the signal is absolutely
integrable, but it is not bounded. But in the discrete time domain, if the signal is absolutely
summable, then it must be bounded and approach is 0 as t tends to infinity; however, the
converge is not true. Meaning to say; that if the signal is bounded and approaches 0 as t tends

to infinity, then it may not implies that the signal is absolutely summable.

We can see one quick example. Consider this signal g of t given by 1 over t; where t is a

belongs to a set of positive integers, ok. So, we compute this summation; the taking the sum



of the absolute value of g of t starting from t is equal to 1 up to infinity. So, we see this
summation is given, we can write 1 plus 1 by 2 plus 1 by 3 plus 1 by 4, ok. Now if I start
clubbing the entries of the summation; let us say 1 plus 1 by 2 would remain as it is, plus if I

combine these two parts. So, this part would be greater than 1 by 2.

You could see that it would give me 7 by 12. So, this part is greater than 1 by 2. Now if I club
the next couple of elements, this part is again greater than 1 by 2. Similarly, if I keep
combining the elements of 2 t tends to infinity; I would find that this summation is basically
greater than 1 plus every entry is greater than 1 by 2. And, we know that this would approach
to infinity. So, we see here that though the signal is bounded and approaches zero as t tend to
infinity, because the signal it would die towards to zero. But here for this particular example

that it is not absolutely summable; because the summation is basically infinity, ok.
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Additional results

The equation & = Ax 1s marginally stable if and only if all the eigenvalus of A
have zero or negative real parts and those with zero real parts aq_s:'mpfe roots
of the minimal polynomial of A.

Theorem (Eigenvalue conditions - Slide 20)
The system (H-CLTI) is
° )
Q@ asymplotically stable if and only if all the eigenvalues of A have strictly
negative real parts,

@ unstable if and only if at least one eigenvalue of A has a positive real part

or zero real part, but the corresponding Jordan block is larger than 1 x 1,




So, there are couple of additional results. So, one of the results says that this LTI system or
this homogeneous LTI system is marginally stable; if and only if all the eigenvalues of the
matrix A have zero or negative real parts and those with zero real parts are simple roots of the
minimal polynomial of A. So, here we are introducing another polynomial which we call the

minimal polynomial.

Basically, this condition is equivalent to one of the conditions we had seen earlier also; but
that condition we had seen in terms of the Jordan blocks, which we have introduced on the
slide 20. That the system is marginally stable if and only if all the eigenvalues have negative

or zero real parts, so this part would remain same up to here.

Now, if there are some eigenvalues which lies on zero or the zero axis, then they should be
simple roots of the minimal polynomial. Now in terms of the Jordan blocks we had, that the
Jordan blocks corresponding to eigenvalues with zero real parts are 1 cross 1. So, either of
these conditions we could use; either you compute the Jordan blocks, or you compute the

minimal polynomial. Or let us say the eigenvalues of the minimal polynomial.
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Definition (Minimal pelynomial)

Let A be an n x n matrix. We associate two polynomials to A:

Q The characteristic polynomial of A is defined as
f(s) = det(s.I = A). f(s) is a monic polynomial of degree n.
@ The minimal polynomial of A, which we will denate by ¢(s),
is defined by the following properties:
o 1(s) is monic (i.e., its leading coefficent is 1),
o P(4) =0,
s 1/(s) is the monic polynomial of the smallest possible degree
such that o -I‘l— 0,

4 fW=0

Let us see first how do we define the minimal polynomial. So, let A be an n cross n matrix.
We associate two polynomials with the matrix A. So, first is the characteristic polynomial
which we had already seen, which is given by this function f of s as the determinant of s |

minus A; where f's is a monic polynomial of degree n, ok.

Now, another polynomial we say is the minimal polynomial of A which we will denote here
by psi of s and is defined by a function having the following properties. Let us psi of s is
monic; that is leading coefficient is equal to 1. Psi of A is equal to 0, which it also satisfies.
So, if I put f of A, sorry if I put f of A; it is also equal to 0. So, the minimal polynomial should
also satisfy this property. In addition to these two properties, it should also satisfy this psi s is

the monic polynomial of the smallest possible degree such that psi of A is equal to 0, ok.



So, we will consider some couple of examples by which you would be able to get a clear

picture how to compute this minimal polynomial.
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Definition (Minimal pelynomial)

Let A be an n x n matrix. We associate two polynomials to A:
Q The characteristic polynomial of A is defined as
[(s) = det(s.l — A). f(s) is a monic polynomial of degree n.
@ The minimal pelynomial of A, which we will dencte by v(s),
is defined by the following properties:
o 1(s) is monic (i.e., its leading coefficent is 1),
o« (4) =0,
s 1(s) is the monic polynomial of the smallest possible degree
such that ¢(A) =0,

They also satisfy the following properties:
o If g(s) is another polynomial, then g(A) = 0 if and only if
¥(s) divides g(5).
¢ f(s) is a multiple of v:(s).

So, there are couple of other properties that if g of s is another polynomial, then g of A is
equal to 0 if and only if psi s divides that polynomial g of' s. And the second one f s is also a

multiple of psi of s.
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Consider

oo
00 -1 W[’ﬁ] =0
lts characteristic polynomial is A(A) = A*(A+1)
W = »A >
A
1
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So, first we will consider an example for computing the minimal polynomial. Let us say we
have this matrix, A matrix given as with this specific structure. So, if you compute the
characteristic polynomial which is given by the detriment of lambda I minus A; it is given by

lambda square lambda plus 1, excuse me. So, lambda square lambda plus 1.

Now I want to find a polynomial psi of s which is of lesser degree than this. It has a degree of
3 and it also satisfies psi of A is equal to 0, ok. So, a polynomial of less than degree 3 could
be a; so there are a couple of options. Let us say psi of A sorry, let us say psi of lambda could

be lambda which is of degree 1 or lambda plus 1; which is also a degree 1.

Now if there could be a polynomial of degree 2 which could be lambda square or lambda

lambda plus 1. And also it could be equal to the characteristic polynomial lambda square



lambda plus 1 which is of degree 3. Now if we try to see with all these polynomials where the

psi of A is equal to 0 satisfies, then it would be the minimal polynomial.

So, if we replace lambda by A, we know that A matrix is not a zero matrix. So, this cannot be
a minimal polynomial. Similarly, lambda plus 1, if I put A and plus 1. In fact, it cannot be
considered as the minimal polynomial because we are considering only the minimal
polynomial where we have lambda is equal to 0. So, lambda should definitely be a part of it;
either it would be lambda, lambda square, lambda lambda plus 1 or lambda square lambda

plus 1. So, this is in fact, excuse me that it is not an option for the minimal polynomial, right.

So, if we take this lambda square, again if I take the square of this matrix, it does not gain. If |
put if I replace lambda by A, it would not be equal to 0. So, it is also not a minimal
polynomial. Now if I see this part, lambda in to lambda plus 1. So, if I replace A by A; you
would notice that lambda by putting lambda is equal to A, it becomes equal to 0. So, the

minimal polynomial of this system is given by lambda lambda plus 1.
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lts characteristic polynomial is A(A) = A*(A+ 1) and its minimal polynomial is

U(A) = MA+1). The matrix has eigenvalues (1,0, and ~1. The eigenvalue 0 is
a simple root of the minimal polynomial. This the system is marginally stable

The equation
01 0
i=0 0 0%
00 &1
is not marginally stable, however, because its minimal polynomial is
U0} = A(A 4 1) and A =0 is not a simple root of the minimal polynomial.

Now if I compute the eigenvalues or the roots of this polynomial it contains a simple route
only at lambda is equal to 0. So, they says, that the matrix has eigenvalues. So, there are two
eigenvalues at 0 and the third eigenvalue at minus 1; but if [ compute the roots of the minimal
polynomial it has a simple rooted 0. So, this system is a marginally stable system. Now
consider another example where here instead of 0, I replace it by 1; otherwise the matrix

remains the same.

The characteristic polynomial, so sorry here it should be x. So, if I compute the characteristic
polynomial for this matrix, it is again equal to this one; but the minimal polynomial of this
system 1is also equal to this one, because there does not exist any other polynomial of lesser

degree than 3. And again, if I compute the eigen the roots of this characteristic polynomial;



we already know that there are two roots available at 0, which are not as simple roots. So, this

system is an unstable system and this system is a marginally stable system, ok.
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A time-invariant system is asymptotically stable if all eigenvalues of A have
negative real parts. Is this also true for the time-varying case?

Consider

b= Al 1 e
e=AE= 10 o

The characteristic polynomial of A(f) and the eigenvalues are

detAT-A()=(A+1)* = A=-1,-1
It can be verified directly that 4
et u.:‘@ e
4(1,0) =
u(1,0) I“ ot
Note that determination of the stability using the eigenvalues of matrix A(t) is

not applicable in the time varying case.

So, a time invariant system is as asymptotically a stable if all eigenvalues of A have negative
real parts, so this is what we have already seen. So, now, is this also true for the time varying

case. Let us try to answer this question by a by it considering a simple example.

Let us say we have this stage pace system where the, again sorry I forgot this x; so where A of
t is given by this time varying matrix. Now computing the characteristic polynomial of this
matrix A of t, it can be written as lambda I minus A of t. So, finally this, this becomes a
characteristic polynomial and it is straightforward to see that the eigenvalues of this

characteristic polynomial are at minus 1 and minus 1. So, if I apply the eigenvalue test on the



LTV system; it says that the system is a stable system because the eigenvalues are strictly at

the left hand side.

Now, we can also compute or we can also verify it by computing it by computing it a straight
transition matrix. So, the straight transition matrix of this system is given by this; where we
could readily see that one of the component is having e to the power t which means that this
system is an unstable system, which also implies that we can not apply the eigenvalue test on

to the linear time varying system, ok



