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Consider now the following discrete-time LTV system = NPTEL

=0 1) = AW(t) + BlOult), (1) = Ct)2(t) + D{t)u(?) (DLTV)

Definition (Lyapus bility)

The system (DLTV) is said to be
@ (marginally) stable in the sense of Lyapunov or infernally stable whenever,
for every initial condition (i) = xy € B", the homogeneous state response

|l s ¢

x(t) = dlt,to)xrg, WL 2 to

is uniformly bounded,

@ asymptotically stable {in the Lyapunov sense) whenever, in addition, for every
initial condition z(tp) = zq € R", we have z({t) =+ 0 ast = oo,

0 expanentially stable whenever, in addition, there exist constants
e>00<A<1 sucithat‘ for every initial condition z(tg) = zo € R",

(e}l < eX="0a(ta)]), V2 > to,

@ unstable whenever it is not marginally stable in the Lyapunov sense.

So, now we will see the Lyapunov Stability theorem results for the discrete time case. So,
consider now the following discrete time, linear time varying system where now this t
belongs to the set of integers. So, x t plus 1 is equal to A of t into x of t plus B of t u of t. So,

here A B C D matrices are time varying matrices in the discrete time domain.



So, the result what we had discussed for the continuous time case, all those results almost
remains the same for the discrete time case. So, the first result says is the system is the system
is set to be marginally stable in the sense of the Lyaponuv or the system is internally stable
whenever for every initial condition x naught the homogeneous state response x of t is
uniformly bounded. So, the first definition we know already that the solution of the state

based system must be bounded.

And when we speak about the uniform boundedness we actually mean to say that the norm of
the signal x of t is always less than equal to some constant ¢, ok. Now, the second definition
says the system is asymptotically stable occur in the sense of the Lyapunov, whenever in
addition to the first statement for every initial condition x naught we have x of t approaching

to 0 as t tends to infinity.

The third definition says that the system is exponentially stable whenever in addition to the
above two statements there exists constants ¢ and lambda both positive constants, but here
with respect to the continuous time system, we have an additional condition on lambda that it
should be less than 1. Such that for every initial condition x naught the norm of the signal x is
less than equal to c into lambda to the power t minus t naught and the norm of the vector at t
is equal to t naught. The system is set to be unstable whenever it is not marginally stable in

the sense of Lyapunov.

So, almost all the definitions remains similar to their counterpart of the continuous time
system, there is a minor difference only in the third statement. Again, here the B C D matrices

played no role in this definition.
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The matrices H{s),((w), and D{#] play no role in this definition; therefare, ~ = NP‘TEL

one often simply talks about the Lyapunov stability of the homogeneous system

tt+1)=A(t)r, reR" (H-DLTV)

Theorem (Eigenvalue conditions)

The discrete-time homogeneous LTI system
=t = Ar, zeR" [H-DlTl)
is
@ marginally stable if and only if all the eigenvalues of A have magnitude

smaller than or equal to 1 and all the Jordan blocks corresponding to
eigenvalues with magnitude equal to 1 are 1 x 1,

@ asymptotically and exponentially stable if and only if all the eigenvalues
of A have magnituge strictly smaller than 1, or

@ unstable if and only if at least one eigenvalue of A has magnitude larger

than | or magnitude equal to 1, but the corresponding Jordan block is
larger than 1 x 1.

So, therefore, we will mostly speak about the stability of the homogeneous system that is
without considering the input. So, for the continuous time system, we studied two conditions,
basically 2 tests to determine the stability, one is the eigenvalue test and another is the
Lyapunov test. So, the first eigenvalue test for the discrete time system or homogeneous LT I

system; so, this x plus denotes the x t plus 1, ok.

So, this LTI system is marginally stable if and only if all the eigenvalues of the matrix A have
magnitudes smaller than or equal to 1. Basically, all the eigenvalue should be inside a unit
circle and all the Jordan blocks corresponding to the eigenvalues with magnitude equal to 1
are 1 cross 1, it is similar to what we had seen in the for the continuous time system. The LTI

system is asymptotically and exponentially stable, because we already knew that the



asymptotic stability and the exponential stability for the LTI system basically remains the

same.

So, the system is stable if and only if all the eigenvalues of a have magnitude strictly smaller
than 1 or the system is unstable if and only if at least 1 eigenvalue of the matrix A has
magnitude larger than 1 or magnitude equal to 1, but the corresponding Jordan block is larger
than 1 cross 1. So, we will not see the proof of this theorem since we had already gone

through a detailed proof for the continuous time system, the Lyapunov test.
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Theorem (Lyapunov stability in discrete time]

The following five conditions are equivalent:
@ The system (H-DLTI) is asymptotically stable,
@ The system (H-DLTI) is exponentially stable.
@ Al the eigenvalues of A have itude strictly smaller than 1.

Q For every symmetric positive-definite matrix (), there exists a unique
solution I to the following Stein equation (more commonly known as the
discrete-time Lyapunov equation)

APA-P=-Q. (DT Lyapunev Eq.)

Moreover, P is symmetric and positive-definite.

@ There exists a symmetric positive-definite matrix P for which the
following Lyapunav matrix inequality holds:

APA-P<0. HDT LMI)

So, all these following five conditions are equivalent, the system homogeneous-discrete time
linear time invariant system is asymptotically stable. Is equivalent to saying that the system is

exponentially stable, is equivalent to saying that all the eigenvalues of the matrix A have



magnitude strictly smaller than 1, is equivalent to say that for every symmetric positive

definite matrix Q there exists a unique solution P to the following Stein equation.

So, this stein equation is also known as the discrete time Lyapunov equation. So, this
Lyapunov equation reads A transpose P into a minus P is equal to minus Q. Moreover, P is
symmetric and positive definite. Again, it is equivalent to say that there exists a symmetric
positive definite matrix P for which the following Lyapunov matrix inequality holds. So, the
change here is in the Lyapunov equation basically in the fourth and fifth statement with
respect to the continuous time system, otherwise the first three statements are remains the

same as we had seen there.
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So, again you could do the proof of this theorem in accordance to what we had done for the

continuous time system. So, if we summarize the overall results of the Lyapunov stability test



for the LTI systems. So, here on the left column, we define all the definitions of the unstable,
marginally stable, asymptotically stable and the exponentially stable systems. Here, we are
giving a summary of the continuous time test and the discrete time test, again it is further

divided into eigenvalue test and the Lyapunov test similarly for the discrete time.

So, let us see for the first for the unstable system for some t naught and the initial condition x
of t naught, the signal x of t can be unbounded. It means, if we see the eigenvalue test in the
continuous time that for some lambda 1 of A, the real part of the eigenvalue of the matrix A is
greater than O or the real part of the eigenvalue is equal to 0 with Jordan block larger than 1
cross 1. For the discrete time case, the eigenvalue is outside the unit circle or on the unit

circle itself, but with that Jordan block larger than 1 cross 1.

The system is marginally stable, if the signal x of t for a given initial condition is uniformly
bounded which according to the eigenvalue test that all the real part of the eigenvalue should
be strictly less than 0, and if it is lying on the 0 it should have a Jordan block of 1 cross 1
only. For the discrete time systems, the eigen value should be inside the unit circle or if it is

lying on the unit circle, it should have a Jordan block of 1 cross 1.

The asymptotic stability defines that the signal itself should approach to 0 whenever t tends to
infinity and for the eigenvalue test the real part of the eigenvalue of the matrix A should be
strictly less than 0. For if we see the Lyapunov test so, for the given Q which is positive
definite symmetric matrix Q, there exists a matrix P which is symmetric the symmetric

condition is given by this one and the positive condition is given by this one.

So, there exists a matrix P which is symmetric and positive definite such that it satisfies this
equation, the Lyapunov equation. For the discrete time case all the eigenvalue of the matrix A
should lie inside the unit circle. Here, for the given positive definite matrix Q there again
exists a matrix P which is symmetric and positive definite, such that it satisfies this discrete

time Lyapunov equation.

The system is exponentially stable, if there exists a symmetric positive definite matrix P such

that it satisfies this linear matrix inequalities, again similarly for the discrete time case. So,



this table gives you the entire stability test specifically for the LTI systems both the

eigenvalue test and the Lyapunov test.
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Example: Inverted Pendulum ﬂﬁi \

Consider the inverted pendulum and assume that u = T and y = @ are its input and
output, respectively
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From Newton's law,

mi%6 =mgtsinf — b + T,
o . +
where T denotes a torque applied at the
base and g is the gravitational accelera-

tion,

Let us consider one example with which we had started this lecture or this module. So, here
we are considering the inverted pendulum. So, there we. So, initially we considered the
simple pendulum, but you can also consider it as an inverted pendulum where theta is now

the axis the sorry the angle made from the vertical axis, ok.

So, the control input to this inverted pendulum is the torque applied to the base and why or
the state is the angle this pendulum makes from the vertical axis. So, we very it is well known
that from the Newton’s law, we obtain this particular equation which is you could imagine

that it is a non-linear equation. So, while considering the case of the pendulum we identified 2



equilibrium points, one is at 0 and another is at pi. So, if we see the equilibrium point theta

equals 0 means that the pendulum is standing still upwards, ok. So, let us see what happens.
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At equilibrium point # = =

‘1_["‘# "l%!].u_ m.('_[l 0]

The eigenvalues of A are given by

b b [7
det(A = A) = M| A4 ',\ t20eA= J., + ( '.\ !
mi+ { Imi? 1.\ , 2mf= f
and therefore the linearized system is exponentially stable,

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum converges to this equilibrium

Now, if the equilibrium point theta is equal to pi is considered then linearizing this non-linear
equation gives us this A B C matrices. Now, if [ compute the eigenvalue of the matrix a by
this formula determinant of lambda I minus A where lambda are the eigenvalues; so, after

simplification I compute this two eigenvalues.

Now, notice here there that this part which is inside the under root part would always be less
than or equal to this part. Meaning to say that all the eigenvalues would be strictly on the left
hand side. So, it means that the system is asymptotically stable and also exponentially stable.
Now, we can also compute the P matrix also. So, if we compute the you can do it by yourself

for computing the P matrix. So, this is the P matrix for this system we have obtained.



So, now, if you compute or you can do the self test that if you compute the eigenvalues of this
P matrix, you would see that all the eigenvalues of this matrix P are positive, the symmetric
definite can be strictly seen. So, if you compute the transpose of this matrix P, you would see

it is actually equal to the P transpose, ok.
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Example: Inverted Pendulum :

At equilibrium point
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The eigenvalues of A are given by
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and therefore the linearized system is exponentially unstable, because

b b I.0
Imi? ' I|I[' it kil

This is consistent with the obvious fact that in the absence of u the (nonlinear)
pendulum does not naturally move up to the upright position if it starts away from it.
However, ane can certainly make it move up by applying some Jorque u
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Now, considering at the equilibrium point theta is equal to 0, these are the set of state space
matrices we have obtained. Now, the eigenvalues of this matrix A is given by this one and it
is quite straightforward to see that these eigenvalues specifically with the positive sign is
greater than 0. So, one of the eigenvalues is lying on the writing side meaning to say that the

system is unstable and this we can also see while computing the P matrix.

So, if we compute the P matrix though it is symmetric, but it is not positive definite, ok. So,

we see that the system or the homogeneous system without applying any control signal is a



stable. However, one can certainly make it move up by applying some torque or some control
input u, which we will study in the next module about the controllability and the state

feedback, ok.



