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Lecture - 06
Lipschitz Continuity and Contraction Mapping Theorem - Part 02

Welcome to lecture number 4 of Non-linear dynamical systems, we had just begun seeing what

a Lipschitz function is.

(Refer Slide Time: 00:23)

So, let us just recapitulate the definition. So, function f from R n to R m in called locally

Lipschitz at a point x naught in R n; if that exists a neighbourhood B is; a neighbourhood here

in this case is defined to be a ball centered around x naught with radius epsilon and the radius



is greater than 0. There should exist a neighbourhood and some constant L such that this

inequality is satisfied for all points x 1 and x 2 in that neighbourhood of the point x naught.

So, we are using a ball which is an open ball which means that the distance of every point in

that ball is strictly less than epsilon from the center x naught; that is why it is called a open

ball. So, L is called a Lipschitz constant; once an L is found, we can see that anything larger

also can be put in here and that inequality and this inequality will be satisfied with a larger L

also. So, in general L depends on both x naught and on epsilon.

(Refer Slide Time: 01:33)

So, some examples of Lipschitz functions; f x is equal to minus 4 x is locally Lipschitz at x is

equal to 3; you will later see that it is locally Lipschitz everywhere. In fact, it is globally

Lipschitz. This is what we will see very soon, but we had just begun drawing a graph what is

the meaning of Lipschitz for the special case.
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So, here is the function. So, suppose we are interested in checking if the function is Lipschitz

at this point locally, to say it is locally Lipschitz at this point means we should be able to find a

ball; in this case it is an open interval such that we take any two points inside this ball and we

look at the corresponding values and those values we take here.

So on one side of the inequality f x 1 minus f x 2 less than or equal to L times x 1 minus x 2;

this inequality just means that if we connect those two points by a line, then the slope of this

line should have absolute value at most L. So, can we find a number L such that L puts a

upper bound on the absolute value of the slope? Even though this is decreasing the slope is not

positive here, but we look at the absolute value of the slope and that should be bound from

above by a number L.



So, we will quickly see that a discontinuous function will not satisfy Lipschitz property at the

point of discontinuity.

(Refer Slide Time: 03:21)

At other points, it could satisfy the property of Lipschitz, but at the disc at the point of

discontinuity; suppose this is the function and at x naught, we have this discontinuity. So, if at

x naught how much our small neighbourhood we take; we are forced to take points both from

the left and the right and when we connect these two points from the left and the right we see

that this line could have a slope which becomes more and more vertical. The line connecting

these two points becomes more and more vertical, it will become vertical if and only if you

take the point x naught and just before it.

But you cannot find; there does not exist a number L greater than 0 such that; such that f x 1

minus f x 2 is less than or equal to L times x 1 comma x 2 in which this inequality satisfied for



all x 1 and x 2; for all x 1 and x 2 in the ball. So, for how much our small epsilon we take

because we are forced to take points both from the left and the right. It turns out that, this line

connecting the point from the left and connecting the point from the right; this particular line

has a slope that is not bounded in absolute value [FL].

So, because of that we see that there does not exist an L such that this inequality satisfied for

all x 1 and x 2 in the ball. For a particular x 1 and x 2, you might be able to find the l, but that

L will work only for that x 1 and x 2 in that ball, but we want this inequality to to be satisfied

for all points x 1, x 2 inside the ball of radius epsilon strictly greater than 0. So, this is how we

see that if it is discontinuous; it cannot be locally Lipschitz at the point of discontinuity. At

another point x naught, suppose this is another point x naught at this point it can very well be

locally Lipschitz; as long as in a in this case as long as we take a ball that does not contain this

discontinuity, we can see that the function is locally Lipschitz.

So, let us see some examples. So, f x equal to minus 4 x is locally Lipschitz at x equal to 3.

So, take L equal to 4 take the Lipschitz constant equal to 4 or anything larger. Consider a

function f x equal to e to the power 5 x; this is locally Lipschitz at point say x equal to 4. For

this particular point, we can take the Lipschitz constant L equal to 5 times e to the power 20

plus 1.

So, notice that we are taking the slope of the function evaluated at x equal to 4 and we take

something that is slightly greater. How much greater we take; decides on how big the open

ball around the point x equal to 4 is, but since we are interested in just an open ball of radius

greater than 0. We can take the Lipschitz constant slightly more than the slope at the point x

equal to 4. Consider the function f x is equal to e the power x; this is locally Lipschitz at every

point x naught whichever point x naught we take; we were able to find the Lipschitz constant

L that will work for all points inside a suitable ball.

The unit step is locally Lipschitz that every point x naught except the point x equal to 0. So,

what do we mean by locally; what do we mean by the unit step?
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This is like our step function, this is equal to 0 up to here; then suddenly it jumps to the point

1. So, this particular function up to x equal to 0, it is equal to 0 for x greater than 0; it has

jumped to 1 and this is locally Lipschitz at every point except x equal to 0. At x equal to 0, we

saw that there is this discontinuity and hence there will not be a constant L that will work for

that inequality for all points in a ball how much ever small the ball maybe.

So, in other words the unit step is locally Lipschitz at every point x naught except the point x

naught.
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This particular function f x is equal to x to the power 1 by 3 is locally Lipschitz at every x

again except; except x equal to 0; this is a very important example we will see this again and

again. So, let us just draw the graph of f x is equal to x to the power 1 by 3. This particular

graph we see that; this is how the graph looks. So, we see that at x equal to 0; this particular

curve becomes vertical almost vertical. Why? Because if we try to evaluate D by D x of f of x;

we get 1 by 3 times x to the power minus 2 by 3; yeah which is nothing, but 1 over 3 times x

to the power 2 by 3.

So, we see that as x tends to 0; this quantity becomes unbounded and hence and hence we see

that the slope is not bounded about the point 0. So, how much our small neighbourhood we

take about the point 0? When we connect two points, we see that it could have a slope that is

unbounded; we are not able to find a number L such that the Lipschitz; the inequality in the

Lipschitz condition definition that inequality will be satisfied for all points inside that ball, such



a number L we will not be able to find. That is why we will say this particular function is not

locally Lipschitz at the point x equal to 0.

At another point say here we are able to find a ball such that there will be a number L; in other

words whatever ball we take as long as we do not include the point 0. When we connect this,

we can take the farthest and the nearest, we can see where the slope is maximum and we can

choose the number L accordingly; that number L will work for everything. We have to see

where the absolute value of the slope is maximum and we take a Lipschitz constant that is

equal to that or more and that will work for all points in that ball.

Hence, we see that as long as we do not take the point x equal to 0; how much ever close we

take if it is away from x equal to 0, we can find a ball such that [ther/there] there is a number L

satisfying the Lipschitz inequality. And hence except the point x equal to 0, there is a number

L that will satisfy the Lipschitz inequality; hence it is locally Lipschitz at every point except the

point x equal to 0.

Some more examples; so the same function f x is equal to the power 1 by 3 is not locally

Lipschitz that x is equal to 0. So, we could just we could conclude that at a particular point x

naught in R n; if f is differentiable, then it is indeed locally Lipschitz at that point x naught. If it

is locally Lipschitz at a point x naught, it implies that it is continuous locally Lipschitz at a

point x naught means it is continuous at that point x naught.

Conversely, if the function f is continuous at a point x naught; it does not imply that it is

locally Lipschitz at that point x naught.
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And if the function f is locally Lipschitz at the point x naught; it does not mean that is

differentiable at the point x naught. So, we can see some examples about this; just to see why

differentiability is not assured by locally Lipschitz property, we will see that locally Lipschitz

only require that the slope is bounded.
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Slope between any two points; if we take the unit ramp, so it is continuous now. So, we see

that the derivative does not exist at this point because the left hand line limit of the derivative

and the right hand limit of the derivative are not equal to each other; hence at the point 0, the

function f is not differentiable.

But we see that since the slope is bounded; we take any two points; we connect them by this

line the slope is bounded. So, I will just draw a bigger figure; take this particular example. So,

at the point let us say 4; we have drawn a figure such that the graph of f versus x is

continuous, but it is not differentiable at this point because the left hand limit of the derivative

and the right hand limit of the derivative are not equal to each other.

However, you take any two points and we connected; we see that this line is guaranteed to

have a slope that is less in absolute value than the slope of this line yeah. So, we could take



any two points here maybe on the same side and the line slope in absolute value is an upper

bound for the absolute value of the slopes of any two points; close to the number 4.

In other words, we can find a ball here such that we can find the number L that will satisfy the

Lipschitz inequality for all the points in that ball. In other words, here is an example f that is

not differentiable at x equal to 4, but locally Lipschitz at x equal to 4. In other words, if

somebody tells us that this particular function f is locally Lipschitz at the point x equal to 4

and the one asks us does it imply that it was differentiable at the point x equal to 4? The

answer is no. So, this is what the statement here says.

So, if the function f is differentiable; it does imply that it is locally Lipschitz at the point x

naught. If it is locally Lipschitz at the point x naught it is also continuous at the point x

naught, but if it is continuous at the point x naught; it does not imply that it is locally Lipschitz

at x naught. We saw x to the power 1 by 3 as an important example and if it is locally

Lipschitz at a point x naught; it does not imply that it is differentiable at the point x naught, for

that we saw an example now.

So, we will just spend a few; we will spend one slide on the difference between locally

Lipschitz and globally Lipschitz. So, for this purpose we need to see to what extent the

number L depends on x naught and epsilon. So, consider a domain D; a subset of R n and f a

map from D to R n. So, f need not be defined on the whole of R n; it is defined on a domain d.

So, domain is an open and connected subset of R n in this case. So, to say that D is a domain

in R n; it means D is open and connected subset of D, open and connected subset of R n.

So, for a function f that is a map from D to R n; there are various possibilities, f could be

locally Lipschitz at a point x naught in D. We saw the definition for locally Lipschitz at a

point; we could also have a situation where at every point in D, f is locally Lipschitz at that

point this we will say is we will use a word f is locally Lipschitz on d. So, what is the

significance here? L might has to be modified depending on the point x naught. If x naught is

another point; the slope absolute value of the slope might be larger because of which L might



have to be made larger. So, at each point in D; f is locally Lipschitz, but the Lipschitz constant

L is having to be modified depending on the point x naught perhaps L has to be modified.

We will say f is locally Lipschitz on D; if it is the case that f is locally Lipschitz on D and the

Lipschitz constant is independent of the point x naught in D, then we will say f is Lipschitz on

D. The word locally is no longer relevant, since we can find one Lipschitz constant L that

works for the entire domain D. Finally, when the domain D is a whole of R n; if f is Lipschitz

on R n that is there is a constant L that works for every point x naught in R n; then we will say

f is globally Lipschitz.

So, examples of globally Lipschitz functions are sin x, cos x, a constant a times x. The

constant function itself and the zero function, it is possible to decide for each of this functions

a Lipschitz constant L that works for the entire domain of these functions; entire domain in

this case is whole of R.

Examples of function which are locally Lipschitz on r but not globally Lipschitz R x square

into the power x into the power minus x. In fact, any polynomial of degree two or more. So,

these all examples R locally Lipschitz on r, but not globally Lipschitz why because this x

square if slope could become very large depending on the point and hence there is no one

number L that works on the whole of R. Similarly e to the power x and e to the power minus

x, I can have slopes which are very large in absolute value.


