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Periodic orbits

We will study in more detail periodic orbits in a plane.
Trajectory x(t) evolves in a plane, i.e. x(t) € B for
each time instant t.

Objective: design robust stable oscillators

(Amplitude and frequency not too sensitive to initial
conditions and system parameters)

Only nonlinear systems can help.

Linear systems are sensitive to initial conditions, and
too sensitive to system paramters.

(At the brink of instability, or absence of periodic

/‘.'lf its.)

Now, we come to the other topic about periodic orbits. For this purpose, we will study
periodic orbits in more detail for a plane where the trajectory evolves in a plane. So, in other
words at each time instant at each time instant x of t is an element of R 2, it has two

components only.

So, what is the objective? The objective is to design robust and stable oscillators. So, what is
robust about this and what is stable about this? We want that the amplitude and frequency of

the oscillations are not too sensitive to the initial conditions and are not too sensitive to the



system parameters. So, as we had noted at the beginning of this of these lectures only
non-linear systems can help. Why is that, because linear system first of all are very sensitive to
are sensitive to initial conditions in other words if you start with a different initial condition

then the amplitude is different.

Of course for linear systems the frequency remains the same, but the amplitude is different.
Moreover, the fact that there are periodic orbits is extremely sensitive to system parameters.
In other words the eigen values around the imaginary axis, but small changes in the system
parameters eigen values could be in the right half plane or in the left half plane, which means
that we might have either no periodic orbits and all trajectories go to O or the trajectories

could become unbounded, and there is again absence of periodic orbits.

In other words linear systems are at the brink of instability and hence periodic orbits are
extremely sensitive to the system parameters. So, for non-linear systems, the question arises
how to even claim that there are periodic orbits for this system of equations? So, one
extremely important result in this context is the Poincare Bendixon Criteria. So, what does a

criteria tell?
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Poincare Bendixon Criterion

Consider the system
x = f(x)

¢ Suppose M is a closed bounded subset of the plane.

+« M contains no equilibrium points, or contains only
one equilibrium point such that the linearization
here is an unstable focus or an unstable node.

« M is positively invariant,
S:n. M contains a periodic orbit.

G

b

So, consider the system x dot is equal to f of x in which note that x has only two components;
x here has only two components. And suppose, the set M; suppose, there is a set M which is a
compact set, it is a closed and bounded subset of the plane Suppose, M has the property that
M contains no equilibrium points or M could contain an equilibrium point such that that

equilibrium point is either unstable focus or an unstable node.

So, there are two situations for the second bullet. The first case is M contains the equilibrium
points; the second situation is that when we linearize at that equilibrium point. If there is any
equivalent point then at most one equilibrium point is allowed, and at when we linearize at that
equilibrium point then the linearized system has an unstable focus or an unstable node. In other
words both the eigen values of the matrix A, which we get by linearizing at this equilibrium

point are unstable, both the eigen values are in the open right half complex plane.



So, suppose M has this property, further suppose M is also positively invariant. Yeah, if M
satisfies these three conditions that it is a compact set, it is positively in variant and either M
has no equivalent points or at most one which is unstable. These three conditions are sufficient
to ensure that M contains a periodic orbit, yeah. So, under these assumptions, the Poincare

Bendixon criteria claims that there is M is guaranteed to contain a periodic orbit.

(Refer Slide Time: 03:57)

Intuition
« M is positively invariant and compact,

+ Bounded trajectories will have to approach periodic
orbits or equilibrium points as time tends to infinity.

« If M contains no equilibrium points then it must
contain a periodic orbit.

Sufficient condition for existence of periodic orbits.

So, what is the intuition behind this? So, M is positively in variant and compact, in other
words trajectories at start inside M remain inside M for all future time and since the M is
compact. These trajectories are all bonded, they cannot become unbounded because they do

not even leave M, and M is bounded.

Further, these bounded trajectories will have to approach periodic orbits or they can approach

equilibrium points. As t tends to infinity what happens to all these bounded trajectories, they



either approach the equilibrium points or they approach periodic orbits, these are the only two

possibilities. Why, because the trajectories are all bounded and they exist for all future time.

Now, if we rule out existence of any equilibrium points inside M, then we are forced to have a
periodic orbit, this is what Poincare Bendixon criteria says. Secondly, even if M had a periodic
even if M had a equilibrium point, but if that were unstable and the trajectories could not be
converging to them or trajectories could only be converging to the equilibrium point. So, we
would have an periodic orbit, even if M had an equilibrium point which was unstable in that

case.

So, these three conditions on M ensure that there is a periodic orbit. So, please note that this is
only a sufficient condition for existence of a periodic orbit; of course, they can also be a
continuum, they can be non-unique periodic orbits, they can also be a continuum of periodic

orbits which we will see very soon.
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Bendixon Criterion

Sufficient condition for non-existence of periodic orbits
fully contained in a region.
If, on a simply connected region D of the plane ,the
expression

[0y 0%y + OFy /0x;)

« is not identically zero,
» does not change sign,

then %= f(x) has no periodic orbits lying entirely in D,

{2)

Another important criteria in this situation is, the so called Bendixon criteria. So, what does
this criteria say? It is a sufficient condition please note which conditions are necessary, which
conditions are sufficient. The Bendixon criteria is a sufficient condition for non-existence of
periodic orbits; yeah, it is a sufficient condition for non-existence of periodic orbits that are

fully contained inside the region.

So, what is the criteria? If on a simply connected region D of the plane so, we will quickly see
what is simply connected region is. So, on a simply connected region of the plane if this
particular expression here, yeah satisfies the condition that it is not identically 0 and it does not

change its sign.

If these conditions are satisfied, then the system of equations x dot equal to f of x has no

periodic orbits lying entirely in D. So, inside the region D, we check that this quantity is not



always equal to 0 and it also does not change sign inside D. If those two properties are
satisfied by this particular function then they cannot be any periodical orbit lying completely in
D. So, please note that it is only non-existence fully contained inside D of periodic orbits that

is being guaranteed by the criteria.
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So, x dot is equal to x 1 dot x 2 dot which is equal to f 1 of x, f 2 of x. So, this is our
dynamical system, as I said we are considering evolution of trajectories in a plane. So, x has
only two components; x 1 and x 2 and hence this differential equation has only two equations
inside this. So, now, we differentiate the first one, we differentiate f 1 with respect to x 1 and
to that we add the partial derivative of f 2 with respect to x 2. So, note that f 1 depends on x

which is x 1 and x 2.



So, 1 can depend on x 1 also x 2 also and similarly f 2 can depend on x 1 and x 2, hence we
have partial derivatives of f 1 and f 2 here, partial derivative of f 1 with respect to x 1, partial
derivative of f 2 with respect to x 2. This particular quantity is sum function yeah, suppose
that function is called g which depends on both x 1 and x 2. So, what does the Bendixon
criteria say that, this particular quantity you check that g of x 1 comma x 2 is not identically 0

in D. So, D is a region inside this region, this quantity is not identically 0.

In other words there is at least 1 point x 1 x 2 where this is not equal to 0, as soon as soon as
this is not equal to O at least at a single point, it means this is not identically 0 in D. It is
allowed to be 0 at a few points at several points. However, it should not be equal to 0 in at all
the points in D, that is that is a statement that this is not identically 0. Also check that the sign
of g; the sign of g can be equal to either 1 or minus 1 or 0 yeah, this is in general possible. But,
we require that the sign of this should not change in other words it should not go from minus

1to 1; fromminus 1 to 1 or 1 to minus 1.

As long as it is always 1 or always minus 1, maybe at some points it become equal to 0, if the
sign of this does not change when you check for different x 1 x 2 points in this region D. If
these two conditions are satisfied then the Bendixon criteria says then D cannot fully contain a
periodic orbit. There is no periodic orbit that lies entirely in D. So, another assumption that we

had made was the D is a simply connected region.

So, what is a simply connected region? So, in the plane x 1 x 2, suppose this is a region D. We
will call this region D simply connected; connected of course, means that D should not be
made up of two such parts, this is in D and this is in D. So, this is not connected right, because
to say that is connected we take any two points and there should be a curve, there should be a
path between these two points, and the path the points on the path also should lie in D and this

should be possible for every two points in D.

So, if D had two components while certain points are connected by a path lying in D every

two points are not connected yeah, look at a point there a point here a path from there to here



is forced to go outside the set D. So, this such as set would not be connected even. So, for a

region that is connected what do we mean by simply connected?
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So, now we take this region D. So, we take a closed curve inside this, yeah it is just a closed
curve and this closed curve can be shrunk to a point yeah, we can take a smaller curve slightly
smaller curve. So, and this shrinking can eventually lead to a point and in the process of
shrinking to a point inside at no situation does the curve have to leave the set D yeah. In other
words every closed curve can be shrunk to a point while being inside D, if that is a situation

that is the property that D has then we will say D is simply connected, yeah.

So, all these regions that we usually think of are indeed simply connected. So, an example of a

set D that is connected, but not simply connected is a set with which has holes. So, take this



and we rule out this particular case. So, what is our D? Our D is this shaded region and this

shaded region without this particular place without this hole.

So, this; so, this sorry, this D with the hole, this is our D, this is an example for a region that is
connected. Why it is connected? Because, we can take any two points on the in D and there is
a path that connects these two and all points in the path are also in D. But, what about a
closed curve yeah, notice that this closed curve cannot be shrunk, cannot be made smaller and

smaller such that all the whole curve is in D; why because it cannot be shrunk to a point, yeah.

So, in the process of shrinking this curve to this point to any point, it turns out that this hole
because it is inside the curve, but it is not inside D, inside the region D; we are not able to
shrink this closed curve to a point. We might be able to shrink other closed curves to a point,
but for it for the region D to be simply connected, every closed curve we should be able to
shrink to a point. So, there are curves here which we cannot shrink to a point, hence this D is

not simply connected, but this D is simply connected.

So, the Bendixon criteria requires that the region D for which we are checking is simply is a
simply connected region. So, on this simply connected region we check whether the two
functions, whether this function g; whether the function g here which is obtained from f 1, f2

by doing this partial derivative operation.

This g should not be identically O on this region and it should also not change signs from 1 to
minus 1. It is allowed to be 0 at a few points in which case the sign is equal to 0 that is not of
concern, but it should not become from 1 to minus 1 or minus 1 to 1, if D satisfies these two

properties at all points in D g satisfies these properties.
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Then, the Bendixon criteria says that there is no periodic orbit lying entirely in D. What the
Bendixon criteria does not say is that suppose this is a region g, it is simply connected; simply
connected region D. And, suppose g was suppose g of the previous slide changes sign
changes; sign means, what when we take different points x 1 and x 2 then it is equal to 1 at

certain X 1 x 2 points and is equal to minus 1.

At some x 1 comma x 2 is equal to minus 1 at certain other points; yeah, at some at some
other points; if g is changing its sign from 1 and minus 1 then the Bendixon criteria only says is
what it says is that there is no such periodic orbit, there cannot be such a periodic orbit yeah.
But, there could be a periodic orbit that is not lying entirely in D yeah, such a periodic orbit
could be there which partly is inside D and partly outside D, such a periodic orbits could still



exist. The Bendixon criteria does not rule out such periodic orbits existence, it only rules out

any periodic orbit that lies entirely in D, this is ruled out yeah.
So, please note that there is a subtle difference in lying entirely in D and passing through D,
and the criteria only says that if g does not change its sign, while being checked in D then there

is a periodic orbit that is contained in D. So, let us take an example of a linear system.
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So, the corresponding matrix A, this can be also written as x dot is equal to A x, where A is
equal to 0 1 minus 1 0. So, let us take the eigen values for this matrix A. So, determinant of S
I minus A is equal to S square plus 1. So, please check that the determinant of this, the

characteristic polynomial turns out to be this.



So, the eigen values of A are plus and minus j, one eigen value of A is equal to plus j, the other
one is minus j. In other words there are two eigen values both on the imaginary axis which
suggests that there are periodic orbits, this the equilibrium point 0 comma 0 is a center for this

particular A. So, let us see what happens to the Bendixon criteria.
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So, what is our g which we are defined as del f 1 by del x 1 plus del 2 by del x 2. So, for this
particular case, this is our f 1 and this is £ 2. So, derivative of f 1 with respect to x 1 is equal to

0; derivative of £2; x 2 does not even appear in f 2, only x 1 appears.

So, derivative of f 2 with respect to x 2 is also again 0, this is 0 yeah. So, no matter which

region you take; no matter which simply connected region you take g of x 1 x 2 is identically



equal to 0, it is equal to 0 without even having to specify at which point x 1 x 2 we are

checking this. So, this is the situation where Bendixon criteria is not applicable, yeah.

So, Bendixon criteria assumptions not satisfied. The assumptions are not satisfied, does not
mean that there are no periodic orbits lying entirely in the inside that simply connected region
D? No, it does not mean that it only means that because assumptions of the Bendixon criteria
are not satisfied. We cannot go ahead and conclude anything, because Bendixon criteria is not
valid, the statement is not valid. However, we know in this particular case, that it is identically

0 and there are periodic orbits indeed, yeah. In fact, these are all the periodic orbits.

So, from any initial condition on this plane, there is a periodic orbit passing through that. In
other words for every simply connected region that contains the origin as long as this region is
some region like this, there are plenty of periodic orbits. However, Bendixon criteria does not
tell us that, why; because, Bendixon criteria assumes that this g is not identically 0 and that
situation is not satisfied here for the case of a linear system with periodic orbits, and hence we
are not able to use Bendixon criteria here. We will see some more examples of where

Bendixon criteria is applicable in the next lectures.

Thank you.



