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So, the next thing would be to look at reflection from a mirror. So, if you have a planar mirror                    

optical access, incident light reflected light right; I am just going to give you the matrix now,                 



which is , height of course, does not change and the angle is also the same. You                 

might think there might be some sign convention to worry about; but keep in mind that, this                 

is defined saying if the general travel of the rays in one direction, we consider this as the                  

general travel that is the optical axis in this case, for the reflected ray this is the optical axis,                   

ok. 

So, always take the general direction of the ray it took after, ok. So, that is my ray map A B C                      

D matrix for a planar mirror. You could, of course, carry out a similar operation as we did for                   

refraction at a curved surface and work out for reflection at a curved surface, right. And it                 

should be no surprise to you that if you do that you will get. So, this is the matrix for                    

reflection at a curved mirror, it is going to be where R is the radius of curvature of                   

the mirror.  

Now given you an exercise to do something with the beginning and I am very optimistic that                 

you all have done it by now. Work out all the equations for a mirror, right. We have been                   

working out in the class, imaging conditions for a lens and so on and I had asked you to                   

repeat that whole exercise for the mirror. So, if you have done that, you will know that the                  

focal length of a mirror is given by 2/R; I am sorry the power of a mirror is given by 2/R,                     

right. So, it is not surprising that this matrix and this is really very similar, right.  

The c term, the term that changes the angle is the only term of which has a value other than 1                     

or 0, right. So we looked at some standard matrices, we have also looked at how you would                  

trace a ray through a system by cascading those matrices. And you can now see this is very                  

powerful, very easy to do calculation, to use a tool like MATLAB for example, and just give                 

the A B C D parameters for an optical system with any number of elements in it.  

And you just need to take into account the matrix for every element; keeping in mind the                 

travel through homogeneous medium requires an element to be treated as an element. So, let               

us have sometimes, let us do an exercise which uses what you have learnt. And see it is not                   

just that you can trace rays with this method, but you can also learn things about the system,                  



you can use information; the fact that the A or the B or the C or the D parameter has a certain                      

value, a specific value or meets a certain condition.  

Means, you can make a guess or not a guess, you can estimate or you can make some                  

knowledgeable informed decision about what is happening to the rays in the system, ok. So,               

the exercise I want you to carry out is to find the cascaded matrix for this system.  
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So, find the cascaded matrix for a ray that travels first through a distance d1, then through a                  

lens of focal length f and then through a distance d2. So quickly do that matrix multiplication                 

for me; keeping in mind that, if this is associated with matrix M1, this with M2, and this with                   

M3, you are going to have to do it in this order.            

 

Now, let us see if we can get some further information out of this. Let us take the case where                    

What condition is this that I have imposed? Is the imaging condition, right. You               

saw it as 1/u + 1/v =1/f, right. Now, let us say I say this happens to be true for the system.                      

Now, if I could somehow apply this in this matrix that we have arrived at; can I get some                   

information out of it?  



Now, and only both appear in the term B. So, let us pull up that term B right which is d1   d2                    

  

How does having the B coefficient? And now forget how I arrived at this, I am asking you                  

what is the significance of having the B coefficient as 0. What does that mean? What does it                  

mean when you say, an optical element or an optical operation has B equal to 0? What does                  

that mean?  

Student: (Refer Time: 08:08)  

B effects, which parameter y2, right. and now we are saying B is 0. So, in      y θy2 = A 1 + B 1           

effect we are saying we are removing this term always. Other words what            y θA2 = A 1 + B 1  

does that mean?  

Student: (Refer Time: 08:30)  

Irrespective of the angle coming in, the ray is going to some point, right. And we should not                  

be surprised; because if you look at this relationship, this is the imaging relationship. What               

does the imaging relationship tell us? Let us draw a figure, let us say I have my optical axis a                    

lens and I have an object and I am tracing rays let us say from the axial point.  

So, I am tracing rays and if this object and I am looking at the point where imaging is                   

happening, right. Irrespective of the angle of these rays, irrespective of , they all land up at           θ1       

this point. And that is what you expect for a good imaging system. All rays coming from one                  

object point should arrive at the same image point, they should all have the same height.  

So, irrespective of , I can have an infinite set of rays, they each have a different ; but if   θ1               θ1    

this is a good imaging system they will all arrive at the same point in the image plane. I do                    

not have to do it on an axis, I could look at this as I have an optical system and I have an                       

object and I am looking at all the rays coming from this point.  

And they all are getting let us say; let us say it is imaged here, they are all getting imaged                    

here. So, everything from this point is imaged here, they all have the same height y 2                 



irrespective of the angle ok. That information I have got from looking at the coefficients or                

saying this particular coefficient is 0; what does it mean, ok. We can look at one more thing                  

before we end the class and we can say let us take the case where is f.d2  
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So, let us take a case; no I am not considering the first case anymore, let us say we take this                     

case where =f, that will make coefficient A go to 0, right. Now, what does that mean? If I  d2                  

have an optical system, I have a bunch of rays coming in, they all have different heights; but                  

these different heights do not matter right, they are all going to get focused at the focal                 

distance, ok.  

Maybe, I can make it clearer if I do the on axis case, where I say all of these have different                     

heights, but they all get focused to this point. Irrespective of the height of the ray, they will                  

all reach this point here with a different angle. So, that is why this coefficient is not zero here.                   

So, they are all reaching this point here with a different angle; but it does not matter what                  

height they come in.  



And if I look at it what does equal to f say; you are saying the image plane is at the focal        d2                

plane and or that distance is nothing, but the focal distance. And in this particular case I     d2              

am looking at rays coming in parallel. So, irrespective of the angle they are all going to get                  

focused to the focal plane, ok.  

So, the idea today’s class was to show you that, you can do ray tracing in a very simple                   

manner using these matrix operations; you can arrive at a matrix for every optical operation;               

standard optical operations may be a combination of matrices and you need to carry that out                

once and get the combined matrix and henceforth apply only the combined matrix. 

If you have a combined matrix for a system and you look at the places where A goes to 0 or                     

B goes to 0 or C or D, you can learn something about the system, right. Or you can say if I                      

apply this condition this parameter goes to 0; so under this condition I will make it work like                  

a good imaging system or parallel rays will do this so on, right. So, it tells you a little bit of                     

what you might need to do in order to make that optical system with that matrix behave in a                   

certain way ok, that is all for today’s class.  
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Good morning. So, in yesterday’s class we looked at tracing rays using the matrix method,               

right. And we developed matrices for certain operations and I gave you some as exercises.               

We also looked at how you can cascade various operations and that in effect is the ray tracing                  



procedure; because when you cascade matrices, you are. In fact, saying this is how the ray                

bends and travels through the optical system. So, we ended with a system shown here, I have                 

gone back to yesterday’s notes and you see you have a lens of the system here, you have a                   

lens with a distance before.  

And after it and we arrived at the matrix, the cascaded matrix for the system which gave us                  

this result over here. And then we said let us apply a certain condition, we applied this                 

condition 1 by ; doing so, turning one of these coefficients to 0. And we also   /f  d1 + d2 = 1              

looked at the implication what does it mean if that coefficient is 0, right. So, I want to go                   

back to that, because though we looked at it; what exactly it is important enough to take                 

another look at this matrix and we said when the coefficient B is 0, what does that imply; it                   

means that, any ray with height , this is a ray with height   at the object claim, right.y1 y1  

It is going to get imaged at the image plane at , irrespective of the angle; that is what that           y2          

B equal to 0 means. And that is the very definition of a good imaging system, right. If all rays                    

from one object point get image to the same image point that is the definition of a good                  

imaging system, right. So, we are seeing all rays from , irrespective of ; can have          y1    θ1  θ1    

any value, they get imaged at , they may be coming to , with a different angle, but they      y2       y2        

are arriving at ,. And this is the definition of a good imaging system.y2   

So, we can say that this matrix with coefficient B equal to 0 gives us the conjugate points.                  

This matrix that we developed in the last class, was the matrix for a space, a lens, a space;                   

and   are conjugate points and we know that, now because B = 0, ok.d1 d2   
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Now, another thing you might not have noticed. But, if you look at the matrices we                

developed yesterday, we did a matrix for travel through free space. So, if you travel through                

a, the ray travels through free space of distance d; this was the matrix that you got. The                  

determinant of this matrix is 1.  

If you did the matrix for refraction we had 1 0 0 n 1 by and the determinant of this matrix              n2        

was by right. If you did the matrix for a lens we had 1 0 minus 1 by f 1. So, a thin lens n 
1   n 

2                        

of focal length of the matrix a determinant of this matrix was 1, ok. And if you go back to                    

these derivations, wherever you have the determinant 1 we actually get that determinant;             

because we made the assumption that the refractive index in the starting space, in the object                

space and the refractive index in the image space were the same. In fact, we said it is ,                 n1    n2  

  or air  , right.  n1   n1air    

So, if you go back to those derivations and if you actually take your optical system whatever                 

it is, and then say I have n 1 here and I have here. The determinant of all of these matrices             n2          

will end up being by , ok. So, you can go back and verify that of course, with the    n1   n2               



refraction at a surface because you have those two; you cannot say the same medium, because                

then you would not have any refraction. So, there the odd result comes automatically; but in                

other cases if you do not pick the same medium for the object, in the image space, you will                   

end up with a determinant which is a ratio of these two refractive indices. 

 

And this leads to a very powerful conservation law in optical systems. We are not going to go                  

into the details of it, you can derive this law using matrix methods and maybe I will give you                   

an exercise in which you do that. But I want to mention the law, because I want you to be                    

familiar with it, ok. So, it gives rise to a powerful convention: lot has several names, sorry                 

conservation law, it has several names; it is very popularly known as the Lagrange invariant               

or sometimes it is called the Lagrange Helmholtz invariant, ok.  

And if you use matrix techniques and this fact that, the determinant always works out to be                 

the ratio of the starting and the ending refractive indices. This law is going to look like this.                  

So, invariant means something stays constant and here it is as a ray travels through the                

system something stays constant, ok. And the constant turns out to be the product of these                

parameters, let me make it clear what I mean by these parameters.  

So, again I have a lens I am going to draw. So, I am drawing it as a line and I have a ray                        

traveling like this; this is an axial ray, I have an object, this is y, this is , I have an image;                α      

actually means, this is y dash, this is , dash this is n dash this is n. So, what is this constant        α               

is the; product of the refractive index in that space, the angle that the axial ray makes with the                   

optical axis and the dimension of the field at that point; that stays the same throughout the                 

optical system ok.  

So, you can derive this using matrix methods, where do you think this is going to be useful.                  

So, you think about when we wanted to calculate magnification of a system. To calculate               

magnification we always needed to find out the height odd as we took the ratio of the heights                  



and objected to an image right. So, you always have to find out location of the image, height                  

of the image, sorry where it is and derive these parameters to get to magnification.  

Here by tracing a single ray, I am able to get some information about the optical system; just                  

because there is a constant, I say if I know something about this ray somewhere without                

having to figure out it is. Something in object space I am able to use this constant and we find                    

out parameters in image space, ok. So, I will try to give you some exercises. So, you see the                   

power of this law, but just be familiar with it, you might give and see it in OSLO; they will                    

give you some number saying this is the Lagrangian variant of your optical system, ok. So, I                 

just want you to be familiar with this.  


